ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing

Hongye Yuan, Saif Abdulla Ali Alateeqi Aljneibi, Jiaren Yuan, Yuxiang Wang, Hui Liu, Jie Fang, Chunhua Tang, Xiaohong Yan, Hong Cai, Yuandong Gu, Stephen John Pennycook, Jifang Tao, Dan Zhao

Research output: Journal article publicationJournal articleAcademic researchpeer-review

402 Citations (Scopus)

Abstract

Surmounting the inhomogeniety issue of gas sensors and realizing their reproducible ppb-level gas sensing are highly desirable for widespread deployments of sensors to build networks in applications of industrial safety and indoor/outdoor air quality monitoring. Herein, a strategy is proposed to substantially improve the surface homogeneity of sensing materials and gas sensing performance via chip-level pyrolysis of as-grown ZIF-L (ZIF stands for zeolitic imidazolate framework) films to porous and hierarchical zinc oxide (ZnO) nanosheets. A novel approach to generate adjustable oxygen vacancies is demonstrated, through which the electronic structure of sensing materials can be fine-tuned. Their presence is thoroughly verified by various techniques. The sensing results demonstrate that the resultant oxygen vacancy-abundant ZnO nanosheets exhibit significantly enhanced sensitivity and shortened response time toward ppb-level carbon monoxide (CO) and volatile organic compounds encompassing 1,3-butadiene, toluene, and tetrachloroethylene, which can be ascribed to several reasons including unpaired electrons, consequent bandgap narrowing, increased specific surface area, and hierarchical micro–mesoporous structures. This facile approach sheds light on the rational design of sensing materials via defect engineering, and can facilitate the mass production, commercialization, and large-scale deployments of sensors with controllable morphology and superior sensing performance targeted for ultratrace gas detection.

Original languageEnglish
Article number1807161
JournalAdvanced Materials
Volume31
Issue number11
DOIs
Publication statusPublished - 15 Mar 2019
Externally publishedYes

Keywords

  • defect engineering
  • metal-organic frameworks
  • oxygen vacancies
  • ppb-level gas sensing
  • ZnO nanosheets

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing'. Together they form a unique fingerprint.

Cite this