TY - JOUR
T1 - Yearly and daily relationship assessment between air pollution and early-stage covid-19 incidence
T2 - evidence from 231 countries and regions
AU - Meng, Yuan
AU - Wong, Man Sing
AU - Xing, Hanfa
AU - Kwan, Mei Po
AU - Zhu, Rui
N1 - Funding Information:
Funding: Man Sing Wong thanks the funding support from a grant by the General Research Fund (Grant no. 15602619), the Collaborative Research Fund (Grant no. C7064-18GF), and the Research Institute for Sustainable Urban Development (Grant no. 1-BBWD), the Hong Kong Polytechnic University. Mei-Po Kwan was supported by grants from the Hong Kong Research Grants Council (General Research Fund Grant no. 14605920; Collaborative Research Fund Grant no. C4023-20GF) and a grant from the Research Committee on Research Sustainability of Major Research Grants Council Funding Schemes of the Chinese University of Hong Kong. Hanfa Xing thanks the funding support from a grant by the National Natural Science Foundation of China (Grant no. 41971406).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/6
Y1 - 2021/6
N2 - The novel coronavirus disease 2019 (COVID-19) has caused significantly changes in worldwide environmental and socioeconomics, especially in the early stage. Previous research has found that air pollution is potentially affected by these unprecedented changes and it affects COVID-19 infections. This study aims to explore the non-linear association between yearly and daily global air pollution and the confirmed cases of COVID-19. The concentrations of tropospheric air pollution (CO, NO2, O3, and SO2) and the daily confirmed cases between 23 January 2020 and 31 May 2020 were collected at the global scale. The yearly discrepancies of air pollutions and daily air pollution are associated with total and daily confirmed cases, respectively, based on the generalized additive model. We observed that there are significant spatially and temporally non-stationary variations between air pollution and confirmed cases of COVID-19. For the yearly assessment, the number of confirmed cases is associated with the positive fluctuation of CO, O3, and SO2 discrepancies, while the increasing NO2 discrepancies leads to the significant peak of confirmed cases variation. For the daily assessment, among the selected countries, positive linear or non-linear relationships are found between CO and SO2 concentrations and the daily confirmed cases, whereas NO2 concentrations are negatively correlated with the daily confirmed cases; variations in the ascending/declining associations are identified from the relationship of the O3-confirmed cases. The findings indicate that the non-linear relationships between global air pollution and the confirmed cases of COVID-19 are varied, which implicates the needs as well as the incorporation of our findings in the risk monitoring of public health on local, regional, and global scales.
AB - The novel coronavirus disease 2019 (COVID-19) has caused significantly changes in worldwide environmental and socioeconomics, especially in the early stage. Previous research has found that air pollution is potentially affected by these unprecedented changes and it affects COVID-19 infections. This study aims to explore the non-linear association between yearly and daily global air pollution and the confirmed cases of COVID-19. The concentrations of tropospheric air pollution (CO, NO2, O3, and SO2) and the daily confirmed cases between 23 January 2020 and 31 May 2020 were collected at the global scale. The yearly discrepancies of air pollutions and daily air pollution are associated with total and daily confirmed cases, respectively, based on the generalized additive model. We observed that there are significant spatially and temporally non-stationary variations between air pollution and confirmed cases of COVID-19. For the yearly assessment, the number of confirmed cases is associated with the positive fluctuation of CO, O3, and SO2 discrepancies, while the increasing NO2 discrepancies leads to the significant peak of confirmed cases variation. For the daily assessment, among the selected countries, positive linear or non-linear relationships are found between CO and SO2 concentrations and the daily confirmed cases, whereas NO2 concentrations are negatively correlated with the daily confirmed cases; variations in the ascending/declining associations are identified from the relationship of the O3-confirmed cases. The findings indicate that the non-linear relationships between global air pollution and the confirmed cases of COVID-19 are varied, which implicates the needs as well as the incorporation of our findings in the risk monitoring of public health on local, regional, and global scales.
KW - Air pollution
KW - Confirmed cases
KW - COVID-19
KW - Generalized additive model
UR - http://www.scopus.com/inward/record.url?scp=85108679382&partnerID=8YFLogxK
U2 - 10.3390/ijgi10060401
DO - 10.3390/ijgi10060401
M3 - Journal article
AN - SCOPUS:85108679382
SN - 2220-9964
VL - 10
JO - ISPRS International Journal of Geo-Information
JF - ISPRS International Journal of Geo-Information
IS - 6
M1 - 401
ER -