TY - GEN
T1 - Wireless Data Acquisition for Edge Learning: Importance-Aware Retransmission
AU - Liu, Dongzhu
AU - Zhu, Guangxu
AU - Zhang, Jun
AU - Huang, Kaibin
PY - 2019/7/2
Y1 - 2019/7/2
N2 - By deploying machine learning algorithms at the network edge, edge learning recently emerges as a promising framework to support intelligent mobile services. It effectively leverages the rich data collected by abundant mobile devices, and exploits the proximate edge computing resource for low-latency execution. Edge learning crosses two disciplines, machine learning and wireless communication, and thereby gives rise to many new research issues. In this paper, we address a wireless data acquisition problem, which involves a retransmission decision in each communication round to optimize the data quality-vs-quantity tradeoff. A new retransmission protocol called importance-aware automatic-repeat-request (importance ARQ) is proposed. Unlike classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty that can be measured using the model under training. Underpinning the proposed protocol is an elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This new relation facilitates the design of a simple threshold based policy for retransmission decisions. As demonstrated via experiments with real datasets, the proposed method avoids learning performance degradation caused by channel noise while achieving faster convergence than conventional SNR-based ARQ.
AB - By deploying machine learning algorithms at the network edge, edge learning recently emerges as a promising framework to support intelligent mobile services. It effectively leverages the rich data collected by abundant mobile devices, and exploits the proximate edge computing resource for low-latency execution. Edge learning crosses two disciplines, machine learning and wireless communication, and thereby gives rise to many new research issues. In this paper, we address a wireless data acquisition problem, which involves a retransmission decision in each communication round to optimize the data quality-vs-quantity tradeoff. A new retransmission protocol called importance-aware automatic-repeat-request (importance ARQ) is proposed. Unlike classic ARQ focusing merely on reliability, importance ARQ selectively retransmits a data sample based on its uncertainty that can be measured using the model under training. Underpinning the proposed protocol is an elegant communication-learning relation between two corresponding metrics, i.e., signal-to-noise ratio (SNR) and data uncertainty. This new relation facilitates the design of a simple threshold based policy for retransmission decisions. As demonstrated via experiments with real datasets, the proposed method avoids learning performance degradation caused by channel noise while achieving faster convergence than conventional SNR-based ARQ.
UR - http://www.scopus.com/inward/record.url?scp=85072318514&partnerID=8YFLogxK
U2 - 10.1109/SPAWC.2019.8815498
DO - 10.1109/SPAWC.2019.8815498
M3 - Conference article published in proceeding or book
AN - SCOPUS:85072318514
T3 - IEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC
BT - 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 20th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2019
Y2 - 2 July 2019 through 5 July 2019
ER -