TY - JOUR
T1 - WFDC1 is a key modulator of inflammatory and wound repair responses
AU - Ressler, Steven J.
AU - Dang, Truong D.
AU - Wu, Samuel M.
AU - Tse, Yan Yin
AU - Gilbert, Brian E.
AU - Vyakarnam, Annapurna
AU - Yang, Feng
AU - Schauer, Isaiah G.
AU - Barron, David A.
AU - Rowley, David R.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - WFDC1/ps20 is a whey acidic protein four-disulfide core member that exhibits diverse growth and immune-associated functions in vitro. In vivo functions are unknown, although WFDC1 is lower in reactive stroma. A Wfdc1-null mouse was generated to assess core functions. Wfdc1-null mice exhibited normal developmental and adult phenotypes. However, homeostasis challenges affected inflammatory and repair processes. Wfdc1-null mice infected with influenza A exhibited 2.75-log-fold lower viral titer relative to control mice. Wfdc1-null infected lungs exhibited elevated macrophages and deposition of osteopontin, a potent macrophage chemokine. In wounding studies, Wfdc1-null mice exhibited an elevated rate of skin closure, and this too was associated with elevated deposition of osteopontin and macrophage recruitment. Wfdc1-null fibroblasts exhibited impaired spheroid formation, elevated adhesion to fibronectin, and an increased rate of wound closure in vitro. This was reversed by neutralizing antibody to osteopontin. Osteopontin mRNA and cleaved protein was up-regulated in Wfdc1-null cells treated with lipopolysaccharide or polyinosinic-polycytidylic acid coordinate with constitutively active matrix metallopeptidase-9 (MMP-9), a protease that cleaves osteopontin. These data suggest that WFDC1/ps20 modulates core host response mechanisms, in part, via regulation of osteopontin and MMP-9 activity. Release from WFDC1 regulation is likely a key component of inflammatory and repair response mechanisms, and involves the processing of elevated osteopontin by activated MMP-9, and subsequent macrophage recruitment.
AB - WFDC1/ps20 is a whey acidic protein four-disulfide core member that exhibits diverse growth and immune-associated functions in vitro. In vivo functions are unknown, although WFDC1 is lower in reactive stroma. A Wfdc1-null mouse was generated to assess core functions. Wfdc1-null mice exhibited normal developmental and adult phenotypes. However, homeostasis challenges affected inflammatory and repair processes. Wfdc1-null mice infected with influenza A exhibited 2.75-log-fold lower viral titer relative to control mice. Wfdc1-null infected lungs exhibited elevated macrophages and deposition of osteopontin, a potent macrophage chemokine. In wounding studies, Wfdc1-null mice exhibited an elevated rate of skin closure, and this too was associated with elevated deposition of osteopontin and macrophage recruitment. Wfdc1-null fibroblasts exhibited impaired spheroid formation, elevated adhesion to fibronectin, and an increased rate of wound closure in vitro. This was reversed by neutralizing antibody to osteopontin. Osteopontin mRNA and cleaved protein was up-regulated in Wfdc1-null cells treated with lipopolysaccharide or polyinosinic-polycytidylic acid coordinate with constitutively active matrix metallopeptidase-9 (MMP-9), a protease that cleaves osteopontin. These data suggest that WFDC1/ps20 modulates core host response mechanisms, in part, via regulation of osteopontin and MMP-9 activity. Release from WFDC1 regulation is likely a key component of inflammatory and repair response mechanisms, and involves the processing of elevated osteopontin by activated MMP-9, and subsequent macrophage recruitment.
UR - http://www.scopus.com/inward/record.url?scp=84908200355&partnerID=8YFLogxK
U2 - 10.1016/j.ajpath.2014.07.013
DO - 10.1016/j.ajpath.2014.07.013
M3 - Journal article
C2 - 25219356
SN - 0002-9440
VL - 184
SP - 2951
EP - 2964
JO - American Journal of Pathology
JF - American Journal of Pathology
IS - 11
ER -