Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat

Lili Mo, Xiangda Ma, Longfei Fan, John H. Xin, Hui Yu

Research output: Journal article publicationReview articleAcademic researchpeer-review

38 Citations (Scopus)

Abstract

Currently, most electrochemical sensors use thin films, single fiber or yarn as sensing unit. However, the weaving process remains challenging along with properties such as a large sensing area, rapid response and long-term stable monitoring. Herein, an electrochemical fabric sensor was developed based on a skin-core structured sensing yarn for in-situ monitoring of potassium ion (K+) concentrations in human sweat and this was achieved through a simple but novel electro-assisted core spinning technique (EACST). The nanofibers in the skin layer of the induction yarn showed excellent hydrophilicity and high specific surface area (8.85 m2/g) as well as significant differences in hydrophilicity and hydrophobicity of the warp and weft yarns of the fabric. As such, they could achieve absorption of sweat limit domain in the skin sensing area, so that the sensor can respond quickly within a short time (2.1 s) and achieve long-term stable sensing (above 6000 s). In addition, the sensor exhibited excellent selectivity, potential reproducibility as well as low noise and signal drift (3.6 × 10−2 mV/s). The large-area (55 cm × 35 cm) of the electrochemical fabric sensor could also be sewn into clothing for integration onto the human body where it could effectively collect sweat for real-time in-situ monitoring of K+ signals in human sweat.

Original languageEnglish
Article number140473
JournalChemical Engineering Journal
Volume454
DOIs
Publication statusPublished - 15 Feb 2023

Keywords

  • Electro-assisted core spinning technology
  • Electrochemical sensor
  • Large area detection
  • Potassium ion
  • Response time

ASJC Scopus subject areas

  • General Chemistry
  • Environmental Chemistry
  • General Chemical Engineering
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat'. Together they form a unique fingerprint.

Cite this