TY - GEN
T1 - VIBE: Topic-Driven Temporal Adaptation for Twitter Classification
AU - Zhang, Yuji
AU - Li, Jing
AU - Li, Wenjie
N1 - Publisher Copyright:
©2023 Association for Computational Linguistics.
PY - 2023/12
Y1 - 2023/12
N2 - Language features are evolving in real-world social media, resulting in the deteriorating performance of text classification in dynamics. To address this challenge, we study temporal adaptation, where models trained on past data are tested in the future. Most prior work focused on continued pretraining or knowledge updating, which may compromise their performance on noisy social media data. To tackle this issue, we reflect feature change via modeling latent topic evolution and propose a novel model, VIBE: Variational Information Bottleneck for Evolutions. Concretely, we first employ two Information Bottleneck (IB) regularizers to distinguish past and future topics. Then, the distinguished topics work as adaptive features via multi-task training with timestamp and class-label prediction. In adaptive learning, VIBE utilizes retrieved unlabeled data from online streams created posterior to training data time. Substantial Twitter experiments on three classification tasks show that our model, with only 3% of data, significantly outperforms previous state-of-the-art continued-pretraining methods.
AB - Language features are evolving in real-world social media, resulting in the deteriorating performance of text classification in dynamics. To address this challenge, we study temporal adaptation, where models trained on past data are tested in the future. Most prior work focused on continued pretraining or knowledge updating, which may compromise their performance on noisy social media data. To tackle this issue, we reflect feature change via modeling latent topic evolution and propose a novel model, VIBE: Variational Information Bottleneck for Evolutions. Concretely, we first employ two Information Bottleneck (IB) regularizers to distinguish past and future topics. Then, the distinguished topics work as adaptive features via multi-task training with timestamp and class-label prediction. In adaptive learning, VIBE utilizes retrieved unlabeled data from online streams created posterior to training data time. Substantial Twitter experiments on three classification tasks show that our model, with only 3% of data, significantly outperforms previous state-of-the-art continued-pretraining methods.
UR - http://www.scopus.com/inward/record.url?scp=85175230739&partnerID=8YFLogxK
M3 - Conference article published in proceeding or book
AN - SCOPUS:85175230739
T3 - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
SP - 3340
EP - 3354
BT - EMNLP 2023 - 2023 Conference on Empirical Methods in Natural Language Processing, Proceedings
A2 - Bouamor, Houda
A2 - Pino, Juan
A2 - Bali, Kalika
PB - Association for Computational Linguistics (ACL)
T2 - 2023 Conference on Empirical Methods in Natural Language Processing, EMNLP 2023
Y2 - 6 December 2023 through 10 December 2023
ER -