Using sky-pointing fish-eye camera and LiDAR to aid GNSS single-point positioning in urban canyons

Research output: Journal article publicationJournal articleAcademic researchpeer-review

32 Citations (Scopus)

Abstract

Robust and globally-referenced positioning is indispensable for autonomous driving vehicles. Global navigation satellite system (GNSS) is still an irreplaceable sensor. Satisfactory accuracy (about 1 m) can be obtained in sparse areas. However, the GNSS positioning error can be up to 100 m in dense urban areas due to the multipath effects and non-line-of-sight (NLOS) receptions caused by reflection and blockage from buildings. NLOS is currently the dominant factor degrading the performance of GNSS positioning. Recently, the camera has been employed to detect the NLOS and then to exclude the NLOS measurements from GNSS calculation. The exclusion of NLOS measurements can cause severe distortion of satellite distribution, due to the excessive NLOS receptions in deep urban canyons. Correcting the NLOS receptions with the aid of 3D light detection and ranging after detection of NLOS receptions using a fish-eye camera was proposed in this study. Finally, the GNSS positioning was improved by using the healthy and corrected NLOS pseudo-range measurements. The proposed method is evaluated through real road tests in typical highly urbanised canyons of Hong Kong. The evaluation results show that the proposed method can effectively improve the positioning performance.

Original languageEnglish
Pages (from-to)908-914
Number of pages7
JournalIET Intelligent Transport Systems
Volume14
Issue number8
DOIs
Publication statusPublished - 1 Aug 2020

ASJC Scopus subject areas

  • Transportation
  • General Environmental Science
  • Mechanical Engineering
  • Law

Fingerprint

Dive into the research topics of 'Using sky-pointing fish-eye camera and LiDAR to aid GNSS single-point positioning in urban canyons'. Together they form a unique fingerprint.

Cite this