TY - JOUR
T1 - Unravelling genetic causality of haematopoiesis on bone metabolism in human
AU - Ho, Shun Cheong
AU - Li, Gloria Hoi Yee
AU - Leung, Anskar Yu Hung
AU - Tan, Kathryn C.B.
AU - Cheung, Ching Lung
N1 - Publisher Copyright:
© 2022 European Society of Endocrinology Printed in Great Britain.
PY - 2022/12
Y1 - 2022/12
N2 - Objective: Haematopoiesis was shown to regulate bone metabolism in in vivo studies. However, whether haematopoiesis has causal effects on bone health has never been investigated in humans. We aimed to evaluate the causal relationships of blood traits with bone mineral density (BMD) and fracture. Design and methods: Using two-sample Mendelian randomization, causal relationship of 29 blood traits with estimated BMD (eBMD), total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and fracture were evaluated by inverse-variance weighted (IVW) method and multiple sensitivity analyses. Relevant genetic data were obtained from the largest possible publicly available genome-wide association studies. Results: Eight genetically determined red blood cell traits showed positive causal effects on eBMD, with beta estimates ranging from 0.009 (mean corpuscular haemoglobin) to 0.057 (haemoglobin concentration), while three white blood cell traits, including lymphocyte count (beta: −0.020; 95% CI: −0.033 to −0.007), neutrophil count (beta: −0.020; 95% CI: −0.035 to −0.006) and white blood cell count (beta: −0.027; 95% CI: −0.039 to −0.014), were inversely associated with eBMD. Causal effects for six of these blood traits were validated on TBBMD, LSBMD, FNBMD and/or fracture. The association of reticulocyte count (beta: 0.040; 95% CI: 0.016 to 0.063), haemoglobin (beta: 0.058; 95% CI: 0.021 to 0.094) and mean corpuscular haemoglobin concentration (beta: 0.030; 95% CI: 0.007 to 0.054) with eBMD remained significant in multivariable IVW analyses adjusted for other blood traits. Conclusion: This study provided evidence that haematopoietic system might regulate the skeletal system in humans and suggested the possible pathophysiology of bone diseases among people with haematological diseases.
AB - Objective: Haematopoiesis was shown to regulate bone metabolism in in vivo studies. However, whether haematopoiesis has causal effects on bone health has never been investigated in humans. We aimed to evaluate the causal relationships of blood traits with bone mineral density (BMD) and fracture. Design and methods: Using two-sample Mendelian randomization, causal relationship of 29 blood traits with estimated BMD (eBMD), total body BMD (TBBMD), lumbar spine BMD (LSBMD), femoral neck BMD (FNBMD) and fracture were evaluated by inverse-variance weighted (IVW) method and multiple sensitivity analyses. Relevant genetic data were obtained from the largest possible publicly available genome-wide association studies. Results: Eight genetically determined red blood cell traits showed positive causal effects on eBMD, with beta estimates ranging from 0.009 (mean corpuscular haemoglobin) to 0.057 (haemoglobin concentration), while three white blood cell traits, including lymphocyte count (beta: −0.020; 95% CI: −0.033 to −0.007), neutrophil count (beta: −0.020; 95% CI: −0.035 to −0.006) and white blood cell count (beta: −0.027; 95% CI: −0.039 to −0.014), were inversely associated with eBMD. Causal effects for six of these blood traits were validated on TBBMD, LSBMD, FNBMD and/or fracture. The association of reticulocyte count (beta: 0.040; 95% CI: 0.016 to 0.063), haemoglobin (beta: 0.058; 95% CI: 0.021 to 0.094) and mean corpuscular haemoglobin concentration (beta: 0.030; 95% CI: 0.007 to 0.054) with eBMD remained significant in multivariable IVW analyses adjusted for other blood traits. Conclusion: This study provided evidence that haematopoietic system might regulate the skeletal system in humans and suggested the possible pathophysiology of bone diseases among people with haematological diseases.
UR - http://www.scopus.com/inward/record.url?scp=85140856894&partnerID=8YFLogxK
U2 - 10.1530/EJE-22-0526
DO - 10.1530/EJE-22-0526
M3 - Journal article
C2 - 36201175
AN - SCOPUS:85140856894
SN - 0804-4643
VL - 187
SP - 765
EP - 775
JO - European Journal of Endocrinology
JF - European Journal of Endocrinology
IS - 6
ER -