Unraveling the Impact of Visual Cues in Online Portraits on Workers’ Employability in Digital Labor Markets

Yuting Jiang, Matti Rossi, Virpi Kristiina Tuunainen, Zhao Cai, Chee Wee Tan

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Online portraits constitute a pervasive and critical signal in digital labor markets in that workers can boost their employability by manipulating select visual cues embedded in these portraits. Consequently, we attempt to unravel how visual cues embedded in workers’ portraits within digital labor markets can collectively influence constituent dimensions of employability. Notably, we advance a non-verbal cues classification model that differentiates among demographic, physical appearance, image quality, and non-verbal behavioral cues as focal determinants affecting one’s employment status, the number of job offers received, and rehiring probability. Employing computer vision and deep learning algorithmic techniques to analyze the online portraits and personal information of 53,950 workers on Upwork.com, we demonstrate that visual cues embedded in profile portraits exert a significant effect on workers’ employability in digital labor markets.
Original languageEnglish
Title of host publicationProceedings of the 57th Hawaii International Conference on System Sciences (HICSS 2024)
Place of PublicationHonolulu, Hawaii
Publication statusPublished - Jan 2024

Fingerprint

Dive into the research topics of 'Unraveling the Impact of Visual Cues in Online Portraits on Workers’ Employability in Digital Labor Markets'. Together they form a unique fingerprint.

Cite this