Unraveling the correlation between oxide-ion motion and upconversion luminescence in β-La2Mo2O9:Yb3+,Er3+derivatives

Qian He, Mingzi Sun, Xiao Jun Kuang, Bolong Huang, Shi Ye, Qin Yuan Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

9 Citations (Scopus)

Abstract

An optical approach is an alternative method to give insight into the oxide-ion motion in oxide-ion conductors. Herein, we illustrate the correlation between upconversion (UC) luminescence in Yb3+-Er3+and oxide-ion motion in a β-La2(Mo,W)2O9series. The break points at ∼150 °C in the logarithmic UC emission intensity ratio of I525/I660or I660/I550(the three emission peaks of Er3+) versus temperature imply oxide-ion jumps, whereas the slopes of these plots above 150 °C suggest the capacity of oxide-ion motion. Specifically, the larger the absolute slope values, the higher the oxide-ion conduction capacity. Due to the pinning feature of the Fermi level contributed by the Mo-O bonds in β-La2Mo2O9both with and without anion-Frenkel defects or W dopants, as revealed by density functional theory calculations, β-La2Mo2O9remains electronically insulating. Thus, the increase in activation energy and decline in conductivity with an increase in W contents at low temperature (<400 °C) are likely attributed to the higher barrier for the formation of new anion-Frenkel defects. This research gives another perspective on oxide-ion conductors via an optical probe.
Original languageEnglish
Pages (from-to)10965-10970
Number of pages6
JournalJournal of Materials Chemistry C
Volume5
Issue number42
DOIs
Publication statusPublished - 1 Jan 2017

ASJC Scopus subject areas

  • General Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Unraveling the correlation between oxide-ion motion and upconversion luminescence in β-La2Mo2O9:Yb3+,Er3+derivatives'. Together they form a unique fingerprint.

Cite this