Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar

Sayeda Ummeh Masrura, Tammy L. Jones-Lepp, Puangrat Kajitvichyanukul, Yong Sik Ok, Daniel C.W. Tsang, Eakalak Khan

Research output: Journal article publicationJournal articleAcademic researchpeer-review

14 Citations (Scopus)

Abstract

The use of biochar to recover nitrogen and phosphorus from wastewater especially source-separated human urine is attractive from both economic and environmental standpoints. The widespread use of pharmaceuticals has raised concerns as they are not fully metabolized and ended up in human urine. The objective of this study is to examine adsorption of antibiotics (azithromycin, ciprofloxacin, sulfamethoxazole, trimethoprim, and tetracycline) and nutrients (ammonium and phosphate) in source-separated human urine by biochar and subsequent desorption. Batch adsorption experiments were conducted using biochar prepared from oak wood (OW) and paper mill sludge (PMS) to elucidate the effects of adsorption time, pH, and adsorbent dose. The desorption of adsorbed nutrients and antibiotics was also investigated. While the nutrient adsorption was more favorable by the PMS biochar, antibiotic adsorption was more prolific by the OW biochar. Hydrogen bonding and π-π interaction were identified as potential adsorption mechanisms. Experimental results agree with the Freundlich isotherm and pseudo-second order models (except the OW biochar for the kinetics). The findings suggest that biochar can adsorb both nutrients (43.30–266.67 mg g−1) and antibiotics (246.70–389.0 μg g−1) simultaneously. Lower solution pH (<5) was better for antibiotic adsorption, while higher solution pH (≥5) favored nutrient recovery. Also, desorption of the antibiotics (maximum of 92.6% for trimethoprim) was observed and might arise in the environment with the applications of biochar for nutrient recovery from human urine and subsequently for soil quality improvement. The findings serve as a foundation for future research on adsorption-based methods for separating nutrients and antibiotics in aqueous solutions, particularly urine.

Original languageEnglish
Article number134426
JournalChemosphere
Volume299
DOIs
Publication statusPublished - Jul 2022

Keywords

  • Nutrient recycling
  • Pharmaceutical removal
  • Resource recovery
  • Selective adsorption
  • Source-separated urine

ASJC Scopus subject areas

  • Environmental Engineering
  • General Chemistry
  • Environmental Chemistry
  • Pollution
  • Public Health, Environmental and Occupational Health
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Unintentional release of antibiotics associated with nutrients recovery from source-separated human urine by biochar'. Together they form a unique fingerprint.

Cite this