Abstract
Knowledge of the distributions of various properties within a proton exchange membrane (PEM) fuel cell is a prerequisite for the improvement of cell performance, stability, and durability. In this paper, statistical tools are employed to investigate the variations of the current density, membrane water content, and local temperature in six flow-field configurations of PEM fuel cells, utilizing a three-dimensional two-phase multicomponent model. Under the same operating conditions, although the polarizations of the cells are similar, the results show that the extent of the uniformity of different physical properties varies in different flow-field configurations. Due to the proper distributions of reactants, the current density, membrane water content, and temperature in channel-perpendicular flow-fields are distributed more uniformly than in channel-overlapping ones. Furthermore, for all flow-field configurations, the three physical properties showed better uniformity in cases with fewer cathodic serpentine channels than in cases with more channels. These results reveal that a uniformity analysis using statistical tools is useful for a comparison of the merits of different configurations of PEM fuel cells.
Original language | English |
---|---|
Article number | 031003 |
Journal | Journal of Fuel Cell Science and Technology |
Volume | 10 |
Issue number | 3 |
DOIs | |
Publication status | Published - 22 Jul 2013 |
Keywords
- Flow-field design
- Fuel cell simulation
- Proton exchange membrane fuel cells
- Serpentine
- Two-phase model
ASJC Scopus subject areas
- Mechanical Engineering
- Mechanics of Materials
- Renewable Energy, Sustainability and the Environment
- Electronic, Optical and Magnetic Materials
- Energy Engineering and Power Technology