TY - JOUR
T1 - Unidirectional Sidechain Engineering to Construct Dual-Asymmetric Acceptors for 19.23 % Efficiency Organic Solar Cells with Low Energy Loss and Efficient Charge Transfer
AU - Fan, Qunping
AU - Ma, Ruijie
AU - Yang, Jie
AU - Gao, Jingshun
AU - Bai, Hairui
AU - Su, Wenyan
AU - Liang, Zezhou
AU - Wu, Yue
AU - Tang, Lingxiao
AU - Li, Yuxiang
AU - Wu, Qiang
AU - Wang, Kun
AU - Yan, Lihe
AU - Zhang, Rui
AU - Gao, Feng
AU - Li, Gang
AU - Ma, Wei
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/9/4
Y1 - 2023/9/4
N2 - Achieving both high open-circuit voltage (Voc) and short-circuit current density (Jsc) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (Eloss) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D1AD2 (D1=thieno[3,2-b]thiophene and D2=selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high Voc and Jsc, due to the reduced Eloss and efficient charge transfer properties. Inspired by the high Voc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized Eloss, the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.
AB - Achieving both high open-circuit voltage (Voc) and short-circuit current density (Jsc) to boost power-conversion efficiency (PCE) is a major challenge for organic solar cells (OSCs), wherein high energy loss (Eloss) and inefficient charge transfer usually take place. Here, three new Y-series acceptors of mono-asymmetric asy-YC11 and dual-asymmetric bi-asy-YC9 and bi-asy-YC12 are developed. They share the same asymmetric D1AD2 (D1=thieno[3,2-b]thiophene and D2=selenopheno[3,2-b]thiophene) fused-core but have different unidirectional sidechain on D1 side, allowing fine-tuned molecular properties, such as intermolecular interaction, packing pattern, and crystallinity. Among the binary blends, the PM6 : bi-asy-YC12 one has better morphology with appropriate phase separation and higher order packing than the PM6 : asy-YC9 and PM6 : bi-asy-YC11 ones. Therefore, the PM6 : bi-asy-YC12-based OSCs offer a higher PCE of 17.16 % with both high Voc and Jsc, due to the reduced Eloss and efficient charge transfer properties. Inspired by the high Voc and strong NIR-absorption, bi-asy-YC12 is introduced into efficient binary PM6 : L8-BO to construct ternary OSCs. Thanks to the broadened absorption, optimized morphology, and furtherly minimized Eloss, the PM6 : L8-BO : bi-asy-YC12-based OSCs achieve a champion PCE of 19.23 %, which is one of the highest efficiencies among these annealing-free devices. Our developed unidirectional sidechain engineering for constructing bi-asymmetric Y-series acceptors provides an approach to boost PCE of OSCs.
KW - Charge Transfer
KW - Dual-Asymmetric Acceptors
KW - Energy Loss
KW - Organic Solar Cells
KW - Sidechain Engineering
UR - http://www.scopus.com/inward/record.url?scp=85165960153&partnerID=8YFLogxK
U2 - 10.1002/anie.202308307
DO - 10.1002/anie.202308307
M3 - Journal article
C2 - 37463122
AN - SCOPUS:85165960153
SN - 1433-7851
VL - 62
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 36
M1 - e202308307
ER -