Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends

Yun Wei, Xin Yang, Xiao Xiao, Zhiao Ma, Tianlei Zhu, Fei Dou, Jianjun Wu, Anthony Chen, Ziyou Gao

Research output: Journal article publicationReview articleAcademic researchpeer-review

Abstract

As the scale of urban rail transit (URT) networks expands, the study of URT resilience is essential for safe and efficient operations. This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research. First, URT resilience is defined by three primary abilities: absorption, resistance, and recovery, and four properties: robustness, vulnerability, rapidity, and redundancy. Then, the metrics and assessment approaches for URT resilience were summarized. The metrics are divided into three categories: topology-based, characteristic-based, and performance-based, and the assessment methods are divided into four categories: topological, simulation, optimization, and data-driven. Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods, such as conventional complex network analysis and operations optimization theory, with new techniques like big data and intelligent computing technology, to accurately assess URT resilience. Finally, five potential trends and directions for future research were identified: analyzing resilience based on multisource data, optimizing train diagram in multiple scenarios, accurate response to passenger demand through new technologies, coupling and optimizing passenger and traffic flows, and optimal line design.

Original languageEnglish
JournalEngineering
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • Network disruption
  • Resilience assessment
  • Resilience improvement
  • Urban rail transit

ASJC Scopus subject areas

  • General Computer Science
  • Environmental Engineering
  • General Chemical Engineering
  • Materials Science (miscellaneous)
  • Energy Engineering and Power Technology
  • General Engineering

Fingerprint

Dive into the research topics of 'Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends'. Together they form a unique fingerprint.

Cite this