Abstract
Ca-ion batteries (CIBs) have been considered a promising candidate for the next-generation energy storage technology owing to the abundant calcium element and the low reduction potential of Ca2+/Ca. However, the large size and divalent nature of Ca2+ induce significant volume change and sluggish ion mobility in intercalation cathodes, leading to poor reversibly and low energy/power densities for CIBs. Herein, a polyanionic Na superionic conduction (NASICON)-typed Na-vacant Na1V2(PO4)2F3 (N1PVF3) with sufficient interstitial spaces is reported as ultra-stable and high-energy Ca ion cathodes. The N1PVF3 delivers exceptionally high Ca storage capacities of 110 and 65 mAh g-1 at 10 and 500 mA g–1, respectively, and a record-long cyclability of 2000 cycles. More interestingly, by tailoring the fluorine content in N1PVFx (1 ≤ x ≤ 3), the high working potential of 3.5 V versus Ca2+/Ca is achievable. In conjunction with Ca metal anode and a compatible electrolyte, Ca metal batteries with N1VPF3 cathodes are constructed, which deliver an initial energy density of 342 W h kg-1, representing one of the highest values thus far reported for CIBs. Origins of the uncommonly stable and high-power capabilities for N1PVF3 are elucidated as the small volume changes and low cation diffusion barriers among the cathodes.
Original language | English |
---|---|
Article number | 2107853 |
Journal | Small |
Volume | 18 |
Issue number | 14 |
DOIs | |
Publication status | Published - 19 Feb 2022 |
Keywords
- Ca ion batteries
- cathode materials
- full cells
- NASICON structure
ASJC Scopus subject areas
- Biotechnology
- Biomaterials
- General Chemistry
- General Materials Science