Abstract
Although multiphoton-pumped lasing from a solution of chromophores is important in the emerging fields of nonlinear optofluidics and bio-photonics, conventionally used organic dyes are often rendered unsuitable because of relatively small multiphoton absorption cross-sections and low photostability. Here, we demonstrate highly photostable, ultralow-threshold multiphoton-pumped biexcitonic lasing from a solution of colloidal CdSe/CdS nanoplatelets within a cuvette-based Fabry-Pérot optical resonator. We find that colloidal nanoplatelets surprisingly exhibit an optimal lateral size that minimizes lasing threshold. These nanoplatelets possess very large gain cross-sections of 7.3 × 10-14 cm2 and ultralow lasing thresholds of 1.2 and 4.3 mJ cm-2 under two-photon (λexc =800 nm) and three-photon (λexc =1.3 μm) excitation, respectively. The highly polarized emission from the nanoplatelet laser shows no significant photodegradation over 107 laser shots. These findings constitute a more comprehensive understanding of the utility of colloidal semiconductor nanoparticles as the gain medium in high-performance frequency-upconversion liquid lasers.
Original language | English |
---|---|
Article number | 8513 |
Journal | Nature Communications |
Volume | 6 |
DOIs | |
Publication status | Published - 30 Sept 2015 |
Externally published | Yes |
ASJC Scopus subject areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy