Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe2/Perovskite Heterojunctions

Zhi Xiang Zhang, Zeng Long-Hui, Xiao Wei Tong, Yang Gao, Chao Xie, Yuen Hong Tsang, Lin Bao Luo, Yu Cheng Wu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

153 Citations (Scopus)


We report on the large-scale synthesis of polycrystalline multilayer PtSe2 film with typical semimetallic characteristics. With the availability of the large-area film, we constructed a heterojunction composed of multilayer PtSe2 and Cs-doped FAPbI3, which can function as a self-driven photodetector in a broadband wavelength from the ultraviolet to the near-infrared region. Further photoresponse analysis revealed that the heterojunction device showed outstanding photosensitive characteristics with a large Ilight/Idark ratio of 5.7 × 103, high responsivity of 117.7 mA W-1, and decent specific detectivity of 2.91 × 1012 Jones at zero bias. More importantly, the rise/fall times were estimated to be 78/60 ns, rendering our device the fastest device among perovskite-2D photodetectors reported to date. In addition, it was also observed that the PtSe2/perovskite photodetector can almost retain its photoresponse properties after storage in ambient conditions for 3 weeks. This study suggests the potential of the present PtSe2/perovskite heterojunction for future air-stable ultrafast photodetecting applications.

Original languageEnglish
Pages (from-to)1185-1194
Number of pages10
JournalJournal of Physical Chemistry Letters
Issue number6
Publication statusPublished - 15 Mar 2018

ASJC Scopus subject areas

  • General Materials Science
  • Physical and Theoretical Chemistry


Dive into the research topics of 'Ultrafast, Self-Driven, and Air-Stable Photodetectors Based on Multilayer PtSe2/Perovskite Heterojunctions'. Together they form a unique fingerprint.

Cite this