TY - JOUR
T1 - Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3•H2O@N-GQDs)
AU - Jiang, Ding
AU - Yang, Cuiqi
AU - Fan, Yadi
AU - Polly Leung, Hang Mei
AU - Kiao, Inthavong
AU - Zhang, Yu
AU - Li, Zhiyang
AU - Yang, Mo
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/7/1
Y1 - 2021/7/1
N2 - Light absorption and interfacial engineering of photoactive materials play vital roles in photoexcited electron generation and electron transport, and ultimately boost the performance of photoelectrochemical (PEC) biosensing. In this work, a novel high-performance photoelectrochemical (PEC) biosensing platform was fabricated based on nonmetallic plasmonic tungsten oxide hydrate nanosheets (WO3•H2O) coupling with nitrogen doped graphene quantum dots (N-GQDs) by a facile one-step hydrothermal approach. The localized surface plasmon resonance (LSPR) properties were achieved by oxygen vacancy engineered WO3·H2O (dWO3•H2O), which could greatly extend the light absorption from visible light to near-infrared light. Moreover, by coupling with N-GQDs, the as-fabricated heterojunction (dWO3•H2O@N-GQD) provided a much enhanced photoelectric response due to the efficient charge transfer. By conjugation with E.coli O157:H7 aptamer, a novel PEC aptasensor based on dWO3•H2O@N-GQD heterojunction was fabricated with a high sensitivity for detection of E.coli O157:H7. The limit of detection (LOD) of this PEC aptasensor is 0.05 CFU/mL with a linear detection range from 0.1 to 104 CFU/mL. Moreover, high reproducibility and good accuracy could also be achieved for analysis in milk samples. This work could provide a promising platform for the development of PEC bioanalysis and offer an insight into the non-metallic plasmonic materials based heterojunctions for high-performances PEC biosensing.
AB - Light absorption and interfacial engineering of photoactive materials play vital roles in photoexcited electron generation and electron transport, and ultimately boost the performance of photoelectrochemical (PEC) biosensing. In this work, a novel high-performance photoelectrochemical (PEC) biosensing platform was fabricated based on nonmetallic plasmonic tungsten oxide hydrate nanosheets (WO3•H2O) coupling with nitrogen doped graphene quantum dots (N-GQDs) by a facile one-step hydrothermal approach. The localized surface plasmon resonance (LSPR) properties were achieved by oxygen vacancy engineered WO3·H2O (dWO3•H2O), which could greatly extend the light absorption from visible light to near-infrared light. Moreover, by coupling with N-GQDs, the as-fabricated heterojunction (dWO3•H2O@N-GQD) provided a much enhanced photoelectric response due to the efficient charge transfer. By conjugation with E.coli O157:H7 aptamer, a novel PEC aptasensor based on dWO3•H2O@N-GQD heterojunction was fabricated with a high sensitivity for detection of E.coli O157:H7. The limit of detection (LOD) of this PEC aptasensor is 0.05 CFU/mL with a linear detection range from 0.1 to 104 CFU/mL. Moreover, high reproducibility and good accuracy could also be achieved for analysis in milk samples. This work could provide a promising platform for the development of PEC bioanalysis and offer an insight into the non-metallic plasmonic materials based heterojunctions for high-performances PEC biosensing.
KW - Nitrogen doped graphene quantum dots (N-GQDs)
KW - Oxygen vacancy
KW - Photoelectrochemical (PEC) biosensing
KW - Plasmonic
KW - Tungsten oxide hydrate nanosheets (WO)
UR - http://www.scopus.com/inward/record.url?scp=85103694255&partnerID=8YFLogxK
U2 - 10.1016/j.bios.2021.113214
DO - 10.1016/j.bios.2021.113214
M3 - Journal article
C2 - 33836431
AN - SCOPUS:85103694255
SN - 0956-5663
VL - 183
JO - Biosensors
JF - Biosensors
M1 - 113214
ER -