Ultimate condition of fiber reinforced polymer-confined concrete

Research output: Journal article publicationJournal articleAcademic researchpeer-review

404 Citations (Scopus)

Abstract

One important application of fiber reinforced polymer (FRP) composites is as a confining material for concrete in the retrofit of existing concrete columns by the provision of FRP jackets. Such jackets are commonly formed in a wet layup process, with the fibers being only or predominantly in the hoop direction. It has been well established in recent studies that the rupture strains/strengths of FRP measured in tests on such FRP-confined concrete cylinders fall substantially below those from flat coupon tensile tests, but the causes are unclear. This paper presents the results of a study that is aimed at clarifying these causes. To this end, the paper reports and compares the ultimate tensile strains of two types of FRP (carbon FRP and glass FRP) obtained from three types of tests-flat coupon tensile tests, ring splitting tests, and FRP-confined concrete cylinder tests. Based on comparisons of these test results, it can be concluded that the FRP hoop rupture strains in FRP-confined concrete cylinders are reduced below the ultimate tensile strains from flat coupon tests by at least three factors - (1) the curvature of the FRP jacket; (2) the deformation localization of the cracked concrete; and (3) the existence of an overlapping zone. While the first factor that reduces the in situ strain capacity of FRP on confined concrete is material dependent, the last two factors that result in a nonuniform strain distribution in the jacket are independent of the FRP material properties. The third effect reduces the average hoop rupture but does not affect the distribution of the confining pressure, as the FRP jacket is thicker in the overlapping zone.
Original languageEnglish
Pages (from-to)539-548
Number of pages10
JournalJournal of Composites for Construction
Volume8
Issue number6
DOIs
Publication statusPublished - 1 Nov 2004

Keywords

  • Compression
  • Concrete columns
  • Confinement
  • Fiber reinforced polymers
  • Retrofitting
  • Tensile strength

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Ceramics and Composites
  • Mechanics of Materials
  • Computational Mechanics

Cite this