Two-stage Semi-supervised Speaker Recognition with Gated Label Learning

Xingmei Wang, Jiaxiang Meng, Kong Aik Lee, Boquan Li, Jinghan Liu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

Abstract

Speaker recognition technologies have been successfully applied in diverse domains, benefiting from the advance of deep learning. Nevertheless, current efforts are still subject to the lack of labeled data. Such issues have been attempted in computer vision, through semi-supervised learning (SSL) that assigns pseudo labels for unlabeled data, undertaking the role of labeled ones. Through our empirical evaluations, the state-of-the-art SSL methods show unsatisfactory performance in speaker recognition tasks, due to the imbalance between the quantity and quality of pseudo labels. Therefore, in this work, we propose a two-stage SSL framework, with the aim to address the data scarcity challenge. We first construct an initial contrastive learning network, where the encoder outputs the embedding representation of utterances. Furthermore, we construct an iterative holistic semi-supervised learning network that involves a clustering strategy to assign pseudo labels, and a gated label learning (GLL) strategy to further select reliable pseudo-label data. Systematical evaluations show that our proposed framework achieves superior performance in speaker recognition than the state-of-the-art methods, matching the performance of supervised learning.

Original languageEnglish
Title of host publicationProceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
EditorsKate Larson
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6495-6503
Number of pages9
ISBN (Electronic)9781956792041
DOIs
Publication statusPublished - Aug 2024
Event33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 - Jeju, Korea, Republic of
Duration: 3 Aug 20249 Aug 2024

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Country/TerritoryKorea, Republic of
CityJeju
Period3/08/249/08/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Two-stage Semi-supervised Speaker Recognition with Gated Label Learning'. Together they form a unique fingerprint.

Cite this