Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers

S. Wang, Y. Zhou, Md Mahbub Alam, Hongxing Yang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

140 Citations (Scopus)

Abstract

This work investigates the aerodynamics of a NACA 0012 airfoil at the chord-based Reynolds numbers (Rec) from 5.3 × 103 to 2.0 × 104. The lift and drag coefficients, CL and CD, of the airfoil, along with the flow structure, were measured as the turbulent intensity Tu of oncoming flow varies from 0.6% to 6.0%. The analysis of the present data and those in the literature unveils a total of eight distinct flow structures around the suction side of the airfoil. Four Rec regimes, i.e., the ultra-low (<1.0 × 104), low (1.0 × 104-3.0 × 105), moderate (3.0 × 105-5.0 × 106), and high Rec (>5.0 × 106), are proposed based on their characteristics of the CL-Rec relationship and the flow structure. It has been observed that Tu has a more pronounced effect at lower Rec than at higher Rec on the shear layer separation, reattachment, transition, and formation of the separation bubble. As a result, CL, CD, CL/CD and their dependence on the airfoil angle of attack all vary with Tu. So does the critical Reynolds number Rec,cr that divides the ultra-low and low Rec regimes. It is further noted that the effect of increasing Tu bears similarity in many aspects to that of increasing Rec, albeit with differences. The concept of the effective Reynolds number Rec,eff advocated for the moderate and high Rec regimes is re-evaluated for the low and ultra-low Rec regimes. The Rec,eff treats the non-zero Tu effect as an addition of Rec and is determined based on the presently defined Rec,cr. It has been found that all the maximum lift data from both present measurements and previous reports collapse into a single curve in the low and ultra-low Rec regimes if scaled with Rec,eff.
Original languageEnglish
Article number115107
JournalPhysics of Fluids
Volume26
Issue number11
DOIs
Publication statusPublished - 24 Nov 2014

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers'. Together they form a unique fingerprint.

Cite this