Turbulence simulation by adaptive multi-relaxation lattice boltzmann modeling

Xiaopei Liu, Wai Man Pang, Jing Qin, Chi Wing Fu

Research output: Journal article publicationJournal articleAcademic researchpeer-review

6 Citations (Scopus)

Abstract

This paper presents a novel approach to simulating turbulent flows by developing an adaptive multirelaxation scheme in the framework of lattice Boltzmann equation (LBE). Existing LBE methods in graphics simulations are usually insufficient for turbulent flows since the collision term disturbs the underlying stability and accuracy. We adopt LBE with the multiple relaxation time (MRT) collision model (MRT-LBE), and address this issue by enhancing the collision-term modeling. First, we employ renormalization group analysis and formulate a new turbulence model with an adaptive correction method to compute more appropriate eddy viscosities on a uniform lattice structure. Efficient algebraic calculations are retained with small-scale turbulence details while maintaining the system stability. Second, we note that for MRT-LBE, predicting single eddy viscosity per lattice node may still result in instability. Hence, we simultaneously predict multiple eddy viscosities for stress-tensor-related elements, thereby asynchronously computing multiple relaxation parameters to further enhance the MRT-LBE stability. With these two new strategies, turbulent flows can be simulated with finer visual details even on coarse grid configurations. We demonstrate our results by simulating and visualizing various turbulent flows, particularly with smoke animations, where stable turbulent flows with high Reynolds numbers can be faithfully produced.
Original languageEnglish
Article number6341727
Pages (from-to)289-302
Number of pages14
JournalIEEE Transactions on Visualization and Computer Graphics
Volume20
Issue number2
DOIs
Publication statusPublished - 1 Feb 2014
Externally publishedYes

Keywords

  • lattice Boltzmann models
  • multiple relaxation time model
  • turbulence modeling
  • Turbulence simulation

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Computer Vision and Pattern Recognition
  • Computer Graphics and Computer-Aided Design

Cite this