Abstract
Tuning the hydrogen adsorption energy (EH) by controlling the surface electronic structure of Pt is essential for enhancing the hydrogen oxidation reaction (HOR) performance in alkaline media. This could be achieved by forming a Pt skin on PdFe/C nanoparticles with structurally ordered intermetallic (O-PdFe@Pt/C) or disordered alloy (D-PdFe@Pt/C). The HOR activity on O-PdFe@Pt/C exhibits an exchange current density of 1.49 A mgPt -1, which is 3.87 and 7.56 times higher than that on D-PdFe@Pt/C (0.385 A mgPt -1) and Pt/C (0.197 A mgPt -1), respectively. The excellent electrocatalytic HOR performance on O-PdFe@Pt/C can be ascribed to the attenuation of EH on the Pt shell induced by the structurally ordered PdFe core, where the EH on O-PdFe@Pt surface is 0.18 eV smaller than that on Pt according to DFT calculations.
Original language | English |
---|---|
Pages (from-to) | 11346-11352 |
Number of pages | 7 |
Journal | Journal of Materials Chemistry A |
Volume | 6 |
Issue number | 24 |
DOIs | |
Publication status | Published - 28 Jun 2018 |
ASJC Scopus subject areas
- General Chemistry
- Renewable Energy, Sustainability and the Environment
- General Materials Science