Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system

Huailei Cheng, Yuhong Wang, Dan Chong, Chao Xia, Lijun Sun, Jenny Liu, Kun Gao, Ruikang Yang, Tian Jin

Research output: Journal article publicationJournal articleAcademic researchpeer-review

5 Citations (Scopus)

Abstract

Reducing greenhouse gas emissions has turned into a pillar of climate change mitigation. Truck platooning is proposed as a strategy to lower emissions from vehicles on roads. However, the potential interactive impacts of this technology on road infrastructure emissions remain unclear. Here, we evaluate the decarbonization effects of truck platooning on the integrated vehicle-road system at a large-scale road network level, spanning 1457 road sections across North America. We show that truck platooning decreases emissions induced by truck operations, but it degrades faster the durability of road infrastructure and leads to a 27.9% rise in road emissions due to more frequent maintenance work. Overall, truck platooning results in a 5.1% emission reduction of the integrated vehicle-road system. In contrast to the benefits of emission reduction, truck platooning leads to additional financial burdens on car users and transportation agencies, calling for the consideration of tradeoffs between emissions and costs and between agencies and users. Our research provides insights into the potential applications of truck platooning to mitigate climate change.

Original languageEnglish
Article number4495
JournalNature Communications
Volume14
Issue number1
DOIs
Publication statusPublished - Dec 2023

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Truck platooning reshapes greenhouse gas emissions of the integrated vehicle-road infrastructure system'. Together they form a unique fingerprint.

Cite this