TRPV1 Modulator Ameliorates Alzheimer-Like Amyloid- β Neuropathology via Akt/Gsk3 β -Mediated Nrf2 Activation in the Neuro-2a/APP Cell Model

Xiufen Wang, Yaqi Bian, Clarence Tsun Ting Wong, Jia Hong Lu, Simon Ming Yuen Lee

Research output: Journal article publicationJournal articleAcademic researchpeer-review

4 Citations (Scopus)

Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder for which there is no effective therapeutic strategy. PcActx peptide from the transcriptome of zoantharian Palythoa caribaeorum has recently been identified and verified as a novel antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). In the present study, we further investigated the neuroprotective potential of PcActx peptide and its underlying mechanism of action, in an N2a/APP cell model of AD. Both Western blot and RT-PCR analysis revealed that PcActx peptide markedly inhibited the production of amyloid-related proteins and the expression of BACE1, PSEN1, and PSEN2. Moreover, PcActx peptide notably attenuated the capsaicin-stimulated calcium response and prevented the phosphorylation of CaMKII and CaMKIV (calcium-mediated proteins) in N2a/APP cells. Further investigation indicated that PcActx peptide significantly suppressed ROS generation through Nrf2 activation, followed by enhanced NQO1 and HO-1 levels. In addition, PcActx peptide remarkably improved Akt phosphorylation at Ser 473 (active) and Gsk3β phosphorylation at Ser 9 (inactive), while pharmacological inhibition of the Akt/Gsk3β pathway significantly attenuated PcActx-induced Nrf2 activation and amyloid downregulation. In conclusion, PcActx peptide functions as a TRPV1 modulator of intercellular calcium homeostasis, prevents AD-like amyloid neuropathology via Akt/Gsk3β-mediated Nrf2 activation, and shows promise as an alternative therapeutic agent for AD.

Original languageEnglish
Article number1544244
JournalOxidative Medicine and Cellular Longevity
Volume2022
DOIs
Publication statusPublished - Aug 2022

ASJC Scopus subject areas

  • Biochemistry
  • Ageing
  • Cell Biology

Fingerprint

Dive into the research topics of 'TRPV1 Modulator Ameliorates Alzheimer-Like Amyloid- β Neuropathology via Akt/Gsk3 β -Mediated Nrf2 Activation in the Neuro-2a/APP Cell Model'. Together they form a unique fingerprint.

Cite this