TY - JOUR
T1 - Translocation and Metabolism of Tricresyl Phosphate in Rice and Microbiome System: Isomer-Specific Processes and Overlooked Metabolites
AU - Yu, Yuanyuan
AU - Huang, Jiahui
AU - Jin, Ling
AU - Yu, Miao
AU - Yu, Xiaolong
AU - Zhu, Xifen
AU - Sun, Jianteng
AU - Zhu, Lizhong
N1 - Funding Information:
This work was jointly supported by the National Natural Science Foundations of China (22076031, 42107298, 42107240), GuangDong Basic and Applied Basic Research Foundation (2022A1515011099, 2021A1515010366), and the key lab of pollution control and ecosystem restoration in industry clusters, ministry of education.
Publisher Copyright:
© 2023 The Author(s)
PY - 2023/2
Y1 - 2023/2
N2 - Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers’ transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
AB - Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers’ transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.
KW - Isomers
KW - OPEs
KW - Rhizosphere microbiome
KW - Rice
KW - Transformation
UR - http://www.scopus.com/inward/record.url?scp=85148479780&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2023.107793
DO - 10.1016/j.envint.2023.107793
M3 - Journal article
SN - 0160-4120
VL - 172
JO - Environment international
JF - Environment international
IS - 107793
M1 - 107793
ER -