Translation of robot-assisted rehabilitation to clinical service: A comparison of the rehabilitation effectiveness of EMG-driven robot hand assisted upper limb training in practical clinical service and in clinical trial with laboratory configuration for chronic stroke

Yanhuan Huang, Will Poyan Lai, Qiuyang Qian, Xiaoling Hu, Eric W.C. Tam, Yongping Zheng

Research output: Journal article publicationJournal articleAcademic researchpeer-review

9 Citations (Scopus)

Abstract

Background: Rehabilitation robots can provide intensive physical training after stroke. However, variations of the rehabilitation effects in translation from well-controlled research studies to clinical services have not been well evaluated yet. This study aims to compare the rehabilitation effects of the upper limb training by an electromyography (EMG)-driven robotic hand achieved in a well-controlled research environment and in a practical clinical service. Methods: It was a non-randomized controlled trial, and thirty-two participants with chronic stroke were recruited either in the clinical service (n = 16, clinic group), or in the research setting (n = 16, lab group). Each participant received 20-session EMG-driven robotic hand assisted upper limb training. The training frequency (4 sessions/week) and the pace in a session were fixed for the lab group, while they were flexible (1-3 sessions/week) and adaptive for the clinic group. The training effects were evaluated before and after the treatment with clinical scores of the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), Functional Independence Measure (FIM), and Modified Ashworth Scale (MAS). Results: Significant improvements in the FMA full score, shoulder/elbow and wrist/hand (P < 0.001), ARAT (P < 0.001), and MAS elbow (P < 0.05) were observed after the training for both groups. Significant improvements in the FIM (P < 0.05), MAS wrist (P < 0.001) and MAS hand (P < 0.05) were only obtained after the training in the clinic group. Compared with the lab group, higher FIM improvement in the clinic group was observed (P < 0.05). Conclusions: The functional improvements after the robotic hand training in the clinical service were comparable to the effectiveness achieved in the research setting, through flexible training schedules even with a lower training frequency every week. Higher independence in the daily living and a more effective release in muscle tones were achieved in the clinic group than the lab group.

Original languageEnglish
Article number91
JournalBioMedical Engineering Online
Volume17
Issue number1
DOIs
Publication statusPublished - 25 Jun 2018

Keywords

  • Clinical service
  • Rehabilitation
  • Robot
  • Stroke
  • Upper limb

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Biomaterials
  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Cite this