Abstract
The design of highly efficient visible-light photocatalysts and the elucidation of decomposition mechanisms are the two key tasks in environmental remediation. Herein, we utilized theoretical calculations to design a Bi metal–based visible-light photocatalyst (Bi@BiOSi) with surface plasmon resonance (SPR) properties, showing that the unique electron delivery channel was formed at the Bi metal/Bi2O2SiO3 interface. The Bi@BiOSi nanosheets were used for photocatalytic removal of ppb-level atmospheric NO, with Bi metal–based SPR resulting in enhanced visible light capture and charge separation efficiency, whereas oxygen vacancy induced the formation of a midgap level and promoted O2 activation. As a result, generation of superoxide and hydroxyl radicals over Bi@BiOSi was promoted, favoring photocatalytic NO removal. To elucidate the reaction mechanism, the products distribution during adsorption and photocatalytic NO oxidation on Bi@BiOSi were determined by in situ DRIFTS, which revealed that the increased production of reactive species inhibited the toxic intermediates (N2O4) formation and increased the selectivity of the NO-to-NO3– transformation via the synergy of oxygen vacancy and Bi metal. Thus, this work provides new insights into the design of non-noble metal-based photocatalysts and establishes a novel method of inhibiting the toxic intermediates production in photocatalysis for efficient and safe air purification.
Original language | English |
---|---|
Pages (from-to) | 187-195 |
Number of pages | 9 |
Journal | Applied Catalysis B: Environmental |
Volume | 241 |
DOIs | |
Publication status | Published - Feb 2019 |
Keywords
- Bi metal
- In situ DRIFTS
- Oxygen vacancy
- Photocatalysis
- Toxic intermediates inhibition
ASJC Scopus subject areas
- Catalysis
- General Environmental Science
- Process Chemistry and Technology