Transfer and mechanical behavior of three-dimensional honeycomb fabric

Xueliang Xiao, Tao Hua, Jinchun Wang, Li Li, Waiman au

Research output: Journal article publicationJournal articleAcademic researchpeer-review

9 Citations (Scopus)

Abstract

Honeycomb woven fabric is a single layer of fabric exhibiting three-dimensional (3D) cellular shape on both fabric sides due to the combination of periodic straight yarn floats and partial plain weave. In a fabric weave repeat, the triangle shape of increased yarn floats and crossed diagonal woven lines form two inverted pyramidal spaces on the fabric surfaces and a closed internal space. This particular 3D architecture is bound to influence the fabric transfer and mechanical properties. This study investigated these properties for honeycomb weaves experimentally, including air resistance, thermal conductivity, water absorption and vapor transmission rate, bending rigidity, compressional energy and tensile behavior. The typical two-dimensional plain woven fabrics with the same yarns and density were set as references and elastic yarns were considered as a factor of effect on the fabric properties. The measurements by the Kawabata Evaluation System and Instron machine show that the honeycomb woven fabric has enhanced air permeability and water absorption, as well as lower thermal conductivity compared to that of the plain woven fabric. Higher bending rigidity, compressional energy and Young's modulus are also observed for honeycomb fabrics. The mechanical properties are found to be affected significantly by applying the elastic yarns to the honeycomb woven fabrics.

Original languageEnglish
Pages (from-to)1281-1292
Number of pages12
JournalTextile Research Journal
Volume85
Issue number12
DOIs
Publication statusPublished - Jul 2015

Keywords

  • elastic yarn
  • honeycomb woven fabric
  • mechanical property
  • transfer property

ASJC Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Polymers and Plastics

Cite this