@inproceedings{26bdf3680da247259daa63615bcb05b1,
title = "Trajectory Representation Learning Based on Road Network Partition for Similarity Computation",
abstract = "In the tasks of location-based services and vehicle trajectory mining, trajectory similarity computation is the fundamental operation and affects both the efficiency and effectiveness of the downstream applications. Existing trajectory representation learning works either use grids to cluster trajectory points or require external information such as road network types, which is not good enough in terms of query accuracy and applicable scenarios. In this paper, we propose a novel partition-based representation learning framework PT2vec for similarity computation by exploiting the underlying road segments without extra information. To reduce the number of words and ensure that two spatially similar trajectories have embeddings closely located in the latent feature space, we partition the network into multiple sub-networks where each is represented by a word. Then we adopt the GRU-based seq2seq model for word embedding, and a loss function is designed based on spatial features and topological constraints to improve the accuracy of representation and speed up model training. Furthermore, a hierarchical tree index PT-Gtree is built to store trajectories for further improving query efficiency based on the proposed pruning strategy. Experiments show that our method is both more accurate and efficient than the state-of-the-art solutions.",
keywords = "Representation Learning, Seq2Seq Model, Similarity Query",
author = "Jiajia Li and Mingshen Wang and Lei Li and Kexuan Xin and Wen Hua and Xiaofang Zhou",
note = "Publisher Copyright: {\textcopyright} 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.; 28th International Conference on Database Systems for Advanced Applications, DASFAA 2023 ; Conference date: 17-04-2023 Through 20-04-2023",
year = "2023",
doi = "10.1007/978-3-031-30637-2_26",
language = "English",
isbn = "9783031306365",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "396--413",
editor = "Xin Wang and Sapino, {Maria Luisa} and Wook-Shin Han and {El Abbadi}, Amr and Gill Dobbie and Zhiyong Feng and Yingxiao Shao and Hongzhi Yin",
booktitle = "Database Systems for Advanced Applications - 28th International Conference, DASFAA 2023, Proceedings",
address = "Germany",
}