Abstract
Small-scale helicopters are very attractive for a wide range of civilian and military applications due to their unique features. However, the autonomous flight for small helicopters is quite challenging because they are naturally unstable, have strong nonlinearities and couplings, and are very susceptible to wind and small structural variations.A nonlinear optimal control scheme is proposed to address these issues. It consists of a nonlinear model predictive controller (MPC) and a nonlinear disturbance observer. First, an analytical solution of the MPC is developed based on the nominal model under the assumption that all disturbances are measurable. Then, a nonlinear disturbance observer is designed to estimate the influence of the external force/torque introduced by wind turbulences, unmodelled dynamics and variations of the helicopter dynamics. The global asymptotic stability of the composite controller has been established through stability analysis. Flight tests including hovering under wind gust and performing very challenging pirouette have been carried out to demonstrate the performance of the proposed control scheme.
Original language | English |
---|---|
Pages (from-to) | 258-268 |
Number of pages | 11 |
Journal | Control Engineering Practice |
Volume | 20 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2012 |
Keywords
- Disturbance observer
- Flight test
- Helicopter
- Model predictive control
- Trajectory tracking
ASJC Scopus subject areas
- Control and Systems Engineering
- Computer Science Applications
- Electrical and Electronic Engineering
- Applied Mathematics