TY - JOUR
T1 - Toward Practical High-Areal-Capacity Aqueous Zinc-Metal Batteries: Quantifying Hydrogen Evolution and a Solid-Ion Conductor for Stable Zinc Anodes
AU - Ma, Longtao
AU - Li, Qing
AU - Ying, Yiran
AU - Ma, Feixiang
AU - Chen, Shengmei
AU - Li, Yangyang
AU - Huang, Haitao
AU - Zhi, Chunyi
N1 - Funding Information:
L.T.M., Q.L., and Y.R.Y. contributed equally to this work. This research was supported by the National Key R&D Program of China under Project 2019YFA0705104.
Publisher Copyright:
© 2021 Wiley-VCH GmbH
PY - 2021/3/25
Y1 - 2021/3/25
N2 - The hydrogen evolution in Zn metal battery is accurately quantified by in situ battery–gas chromatography–mass analysis. The hydrogen fluxes reach 3.76 mmol h−1 cm−2 in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h−1 cm−2 in a Zn//MnO2 full cell. Then, a highly electronically insulating (0.11 mS cm−1) but highly Zn2+ ion conductive (80.2 mS cm−1) ZnF2 solid ion conductor with high Zn2+ transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF2//Zn@ZnF2 cell only produces 0.02 mmol h−1 cm−2 of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high-areal-capacity Zn@ZnF2//MnO2 (≈3.2 mAh cm−2) full cell only produces maximum hydrogen flux of 0.06 mmol h−1 cm−2 (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF2//Zn@ZnF2 symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm−2, 10 mAh cm−2) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF2 anode, the high-areal-capacity aqueous Zn@ZnF2//MnO2 batteries (≈3.2 mAh cm−2) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.
AB - The hydrogen evolution in Zn metal battery is accurately quantified by in situ battery–gas chromatography–mass analysis. The hydrogen fluxes reach 3.76 mmol h−1 cm−2 in a Zn//Zn symmetric cell in each segment, and 7.70 mmol h−1 cm−2 in a Zn//MnO2 full cell. Then, a highly electronically insulating (0.11 mS cm−1) but highly Zn2+ ion conductive (80.2 mS cm−1) ZnF2 solid ion conductor with high Zn2+ transfer number (0.65) is constructed to isolate Zn metal from liquid electrolyte, which not only prohibits over 99.2% parasitic hydrogen evolution but also guides uniform Zn electrodeposition. Precisely quantitated, the Zn@ZnF2//Zn@ZnF2 cell only produces 0.02 mmol h−1 cm−2 of hydrogen (0.53% of the Zn//Zn cell). Encouragingly, a high-areal-capacity Zn@ZnF2//MnO2 (≈3.2 mAh cm−2) full cell only produces maximum hydrogen flux of 0.06 mmol h−1 cm−2 (0.78% of the Zn//Zn cell) at the fully charging state. Meanwhile, Zn@ZnF2//Zn@ZnF2 symmetric cell exhibits excellent stability under ultrahigh current density and areal capacity (10 mA cm−2, 10 mAh cm−2) over 590 h (285 cycles), which far outperforms all reported Zn metal anodes in aqueous systems. In light of the superior Zn@ZnF2 anode, the high-areal-capacity aqueous Zn@ZnF2//MnO2 batteries (≈3.2 mAh cm−2) shows remarkable cycling stability over 1000 cycles with 93.63% capacity retained at ≈100% Coulombic efficiency.
KW - hydrogen evolution suppression
KW - practical-level Zn batteries
KW - quantifying hydrogen evolution
KW - solid Zn -ion conductors
KW - Zn deposition regulation
UR - http://www.scopus.com/inward/record.url?scp=85100960953&partnerID=8YFLogxK
U2 - 10.1002/adma.202007406
DO - 10.1002/adma.202007406
M3 - Journal article
C2 - 33604973
AN - SCOPUS:85100960953
SN - 0935-9648
VL - 33
JO - Advanced Materials
JF - Advanced Materials
IS - 12
M1 - 2007406
ER -