TY - JOUR
T1 - Topology-optimized photonic topological crystalline insulators with multiband helical edge states
AU - Chen, Yafeng
AU - Lan, Zhihao
AU - Wang, Hai Xiao
AU - An, Liang
AU - Su, Zhongqing
N1 - Publisher Copyright:
© 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
PY - 2024/8/1
Y1 - 2024/8/1
N2 - Photonic topological crystalline insulators (PTCIs) with helical edge states provide an alternative way to achieve robust electromagnetic wave transport and processing. However, most existing PTCIs only involve a single topological bandgap, and generally support a pair of gapped helical edge states, restricting the scope of applications in various fields such as multiband waveguides, filters, and communication systems. Here, we design dual-band PTCIs, in which multiple helical edge modes appear within two distinct bulk gaps, for transverse electric (TE) and transverse magnetic (TM) modes, respectively, by introducing the topology optimization method into the photonic crystals with glide symmetry. For PTCIs with TE modes, the mismatched frequency ranges of edge modes hosted by two orthometric boundaries offer an opportunity to realize a photonic demultiplexer. For PTCIs with TM modes, we show the enhanced second harmonic (SH) generation through the coupling of multiband edge modes by matching the frequency ranges of edge modes within the first and second bandgaps to fundamental and SH waves, respectively. This work provides a new way for designing multiband PTCIs with helical edge states, having promising potentials in developing multiband topological photonic devices for both linear and nonlinear applications.
AB - Photonic topological crystalline insulators (PTCIs) with helical edge states provide an alternative way to achieve robust electromagnetic wave transport and processing. However, most existing PTCIs only involve a single topological bandgap, and generally support a pair of gapped helical edge states, restricting the scope of applications in various fields such as multiband waveguides, filters, and communication systems. Here, we design dual-band PTCIs, in which multiple helical edge modes appear within two distinct bulk gaps, for transverse electric (TE) and transverse magnetic (TM) modes, respectively, by introducing the topology optimization method into the photonic crystals with glide symmetry. For PTCIs with TE modes, the mismatched frequency ranges of edge modes hosted by two orthometric boundaries offer an opportunity to realize a photonic demultiplexer. For PTCIs with TM modes, we show the enhanced second harmonic (SH) generation through the coupling of multiband edge modes by matching the frequency ranges of edge modes within the first and second bandgaps to fundamental and SH waves, respectively. This work provides a new way for designing multiband PTCIs with helical edge states, having promising potentials in developing multiband topological photonic devices for both linear and nonlinear applications.
KW - multiband communications
KW - photonic crystals
KW - photonic topological insulators
KW - second harmonic generation
UR - https://www.scopus.com/pages/publications/85202452677
U2 - 10.1088/1367-2630/ad6fc5
DO - 10.1088/1367-2630/ad6fc5
M3 - Journal article
AN - SCOPUS:85202452677
SN - 1367-2630
VL - 26
JO - New Journal of Physics
JF - New Journal of Physics
IS - 8
M1 - 083025
ER -