Topographic modeling and analysis of the landing site of Chang'E-3 on the Moon

Bo Wu, Fei Li, Lei Ye, Si Qiao, Jun Huang, Xueying Wu, He Zhang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

49 Citations (Scopus)


The Chinese lunar probe Chang'E-3, carrying the "Jade Rabbit" lunar rover, successfully landed in the Sinus Iridum area on the Moon on December 14, 2013. This paper presents the characterization activities that were done for the selection of the landing area, including topographic modeling and analysis based on multisource lunar remote sensing data. Seven meter-resolution Chang'E-2 imagery and Lunar Orbiter Laser Altimeter data were integrated to generate a digital elevation model (DEM) with a resolution of 20 m for the entire Sinus Iridum landing area. Long baseline slopes were assessed according to this DEM for all of this area. Lunar Reconnaissance Orbiter narrow-angle camera images and 1.5 m-resolution Chang'E-2 imagery were used to derive DEMs with higher resolution (4 m) at several local regions within the Sinus Iridum landing area. Slope analyses at lander footprint scale (~8m) were performed in these local regions. Craters were detected from the DEMs and the derived orthophotos, and size-frequency distributions were generated. Crater morphological statistics, including the depth/diameter ratios, rim height/diameter ratios and wall slopes, were analyzed. The results showed that the Sinus Iridum landing area is relatively flat. Most of the area has slopes of less than 15°. The steeper slopes are mainly alongside craters and ridges. The crater size-frequency distribution is close to the equilibrium distribution. The crater ages, as indicated by their morphological statistics, vary from mature to relatively fresh in different regions. These topographic modeling and analysis results were used for strategic planning to identify the landing site for the Chang'E-3 and made a useful contribution to the success of the Chang'E-3 mission. •Chang'E-3 landing site characterization in terms of slopes and crater distribution.
Original languageEnglish
Pages (from-to)257-273
Number of pages17
JournalEarth and Planetary Science Letters
Publication statusPublished - 1 Nov 2014


  • Chang'E-3
  • Crater size-frequency
  • Landing site characterization
  • Slope
  • Topography

ASJC Scopus subject areas

  • Geophysics
  • Geochemistry and Petrology
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science


Dive into the research topics of 'Topographic modeling and analysis of the landing site of Chang'E-3 on the Moon'. Together they form a unique fingerprint.

Cite this