Theoretical study of ferroelectric barium strontium titanate-based one-dimensional tunable photonic crystals

K. L. Jim, D. Y. Wang, Chi Wah Leung, C. L. Choy, H. L W Chan

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

1 Citation (Scopus)

Abstract

Tunable photonic crystals (PCs) have attracted much attention in the past decade because of their various applications such as ultra-fast optical filters and optical waveguides with add-drop functionalities. A common means of tuning PC is by changing the refractive indices of the constituent materials via the linear or quadratic electro-optic effect, which leads to a shift of the bandgap positions of the PC. The lead-free material, barium strontium titanate (BST), has a high quadratic electro-optic coefficient comparable to lanthanum-modified lead zirconate titanate (PLZT), and is a promising candidate as a lead-free tunable PC. Here we present a study on the feasibility of developing a one-dimensional tunable PC based on a BST and magnesium oxide (MgO) multilayer structure. The bandgap diagram of the PC structure is calculated using the plane-wave expansion (PWE) method. For a 1% change in the refractive index of BST, a 0.99% frequency shift in the bandgap can be achieved. It corresponds to a wavelength shift of 15.4 nm at a wavelength of 1550nm. Design of a tunable optical filter at a wavelength of 1550nm based on a BST/MgO 1D PC is suggested. The transmission property of the 1D PC is further verified by simulation, using the transfer matrix method (TMM).
Original languageEnglish
Title of host publicationMicro (MEMS) and Nanotechnologies for Defense and Security
Volume6556
DOIs
Publication statusPublished - 15 Nov 2007
EventMicro (MEMS) and Nanotechnologies for Defense and Security - Orlando, FL, United States
Duration: 10 Apr 200712 Apr 2007

Conference

ConferenceMicro (MEMS) and Nanotechnologies for Defense and Security
Country/TerritoryUnited States
CityOrlando, FL
Period10/04/0712/04/07

Keywords

  • BST
  • Electro-optic
  • Photonic crystal
  • Plane-wave expansion method
  • Transfer matrix method
  • Tunable

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Condensed Matter Physics

Cite this