Abstract
The fast tool servo (FTS) machining process provides an indispensable solution for machining optical microstructures with sub-micrometer form accuracy and a nanometric surface finish without the need for any subsequent post processing. The error motions in the FTS machining play an important role in the material removal process and surface generation. However, these issues have received relatively little attention. This paper presents a theoretical and experimental analysis of the effect of error motions on surface generation in FTS machining. This is accomplished by the establishment of a model-based simulation system for FTS machining, which is composed of a surface generation model, a tool path generator, and an error model. The major components of the error model include the stroke error of the FTS, the error motion of the machine slide in the feed direction, and the axial motion error of the main spindle. The form error due to the stroke error can be extracted empirically by regional analysis, the slide motion error and the axial motion error of the spindle are obtained by a kinematic model and the analysis of the profile in the circumferential direction in single point diamond turning (SPDT) of a flat surface, respectively. After incorporating the error model in the surface generation model, the model-based simulation system is capable of predicting the surface generation in FTS machining. A series of cutting tests were conducted. The predicted results were compared with the measured results, and hence the performance of the model-based simulation system was verified. The proposed research is helpful for the analysis and diagnosis of motion errors on the surface generation in the FTS machining process, and throws some light on the corresponding compensation and optimization solutions to improve the machining quality.
Original language | English |
---|---|
Pages (from-to) | 428-438 |
Number of pages | 11 |
Journal | Precision Engineering |
Volume | 38 |
Issue number | 2 |
DOIs | |
Publication status | Published - 1 Apr 2014 |
Keywords
- Fast tool servo
- Modeling and simulation
- Surface characterization
- Surface generation
- Ultra-precision machining
ASJC Scopus subject areas
- General Engineering