Abstract
We study the structural, electronic and transport property of bilayer blue phosphorus (BBP) by using the first-principles. Our results show that the band gap can be adjusted by different stacking structures of the BBP. We simulate the functional device based on AA-, AB- and AC-stacking BBP and the transport characteristics of the current-voltage curve with nonlinear competitive behavior are investigated. Of the three devices, AA stacking BBP has the highest conductivity. Under special bias, the currents of AB- and AC-stacking devices produce interesting competitive behavior. The transport characteristics behaviors of the BBP can be explained by the band structure, transport spectrum and molecular projected self-consistent Hamiltonian. We can control the change of current by adjusting the different contact modes of the BBP. The BBP with interesting electronic and transport properties are expected to have potential applications in nanoelectronics.
Original language | English |
---|---|
Article number | 385103 |
Journal | Journal of Physics D: Applied Physics |
Volume | 52 |
Issue number | 38 |
DOIs | |
Publication status | Published - 15 Jul 2019 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Acoustics and Ultrasonics
- Surfaces, Coatings and Films