TY - GEN
T1 - The Scalable Version of Probabilistic Linear Discriminant Analysis and Its Potential as A Classifier for Audio Signal Classification
AU - Jiang, Yuechi
AU - Frank Leung, H. F.
PY - 2018/7/8
Y1 - 2018/7/8
N2 - Probabilistic Linear Discriminant Analysis (PLDA) has exhibited good performance in face recognition and speaker verification. However, it is not widely used as a general-purpose classifier. The major limitation of PLDA lies in that, in the original formulation, the modeling part and the prediction part require the inversion of large matrices, whose sizes are proportional to the number of training vectors in a class. The original formulation of PLDA is not scalable if there are many training vectors, because the matrices will become too large to be inverted. In the literature, some scalable versions for the modeling part have been proposed. In this paper, we propose the scalable version for the prediction part, which completes the scalable version of PLDA. This makes PLDA able to handle a large number of training data, enabling PLDA to be used as a general-purpose classifier for different classification tasks. We then apply PLDA as the classifier to three different audio signal classification tasks, and compare its performance with Support Vector Machine (SVM), which is a widely used general-purpose classifier. Experimental results show that PLDA performs very well and can be even better than SVM, in terms of classification accuracy.
AB - Probabilistic Linear Discriminant Analysis (PLDA) has exhibited good performance in face recognition and speaker verification. However, it is not widely used as a general-purpose classifier. The major limitation of PLDA lies in that, in the original formulation, the modeling part and the prediction part require the inversion of large matrices, whose sizes are proportional to the number of training vectors in a class. The original formulation of PLDA is not scalable if there are many training vectors, because the matrices will become too large to be inverted. In the literature, some scalable versions for the modeling part have been proposed. In this paper, we propose the scalable version for the prediction part, which completes the scalable version of PLDA. This makes PLDA able to handle a large number of training data, enabling PLDA to be used as a general-purpose classifier for different classification tasks. We then apply PLDA as the classifier to three different audio signal classification tasks, and compare its performance with Support Vector Machine (SVM), which is a widely used general-purpose classifier. Experimental results show that PLDA performs very well and can be even better than SVM, in terms of classification accuracy.
KW - audio signal classification
KW - probabilistic linear discriminant analysis
UR - http://www.scopus.com/inward/record.url?scp=85056529202&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2018.8488995
DO - 10.1109/IJCNN.2018.8488995
M3 - Conference article published in proceeding or book
AN - SCOPUS:85056529202
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2018 International Joint Conference on Neural Networks, IJCNN 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 International Joint Conference on Neural Networks, IJCNN 2018
Y2 - 8 July 2018 through 13 July 2018
ER -