TY - JOUR
T1 - The role of chlorine in global tropospheric chemistry
AU - Wang, Xuan
AU - Jacob, Daniel J.
AU - Eastham, Sebastian D.
AU - Sulprizio, Melissa P.
AU - Zhu, Lei
AU - Chen, Qianjie
AU - Alexander, Becky
AU - Sherwen, Tomas
AU - Evans, Mathew J.
AU - Lee, Ben H.
AU - Haskins, Jessica D.
AU - Lopez-Hilfiker, Felipe D.
AU - Thornton, Joel A.
AU - Huey, Gregory L.
AU - Liao, Hong
N1 - Funding Information:
This work was supported by the Atmospheric Chemistry Program of the US National Science Foundation and by the Joint Laboratory for Air Quality and Climate (JLAQC)
Publisher Copyright:
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/3/29
Y1 - 2019/3/29
N2 - We present a comprehensive simulation of tropospheric chlorine within the GEOS-Chem global 3-D model of oxidant-aerosol-halogen atmospheric chemistry. The simulation includes explicit accounting of chloride mobilization from sea salt aerosol by acid displacement of HCl and by other heterogeneous processes. Additional small sources of tropospheric chlorine (combustion, organochlorines, transport from stratosphere) are also included. Reactive gasphase chlorine Cl, including Cl, ClO, Cl2, BrCl, ICl, HOCl, ClNO3, ClNO2, and minor species, is produced by the HClC OH reaction and by heterogeneous conversion of sea salt aerosol chloride to BrCl, ClNO2, Cl2, and ICl. The model successfully simulates the observed mixing ratios of HCl in marine air (highest at northern midlatitudes) and the associated HNO3 decrease from acid displacement. It captures the high ClNO2 mixing ratios observed in continental surface air at night and attributes the chlorine to HCl volatilized from sea salt aerosol and transported inland following uptake by fine aerosol. The model successfully simulates the vertical profiles of HCl measured from aircraft, where enhancements in the continental boundary layer can again be largely explained by transport inland of the marine source. It does not reproduce the boundary layer Cl2 mixing ratios measured in the WINTER aircraft campaign (1-5 ppt in the daytime, low at night); the model is too high at night, which could be due to uncertainty in the rate of the ClNO2 CCl reaction, but we have no explanation for the high observed Cl2 in daytime. The global mean tropospheric concentration of Cl atoms in the model is 620 cm3 and contributes 1.0% of the global oxidation of methane, 20% of ethane, 14% of propane, and 4% of methanol. Chlorine chemistry increases global mean tropospheric BrO by 85 %, mainly through the HOBrCCl reaction, and decreases global burdens of tropospheric ozone by 7% and OH by 3% through the associated bromine radical chemistry. ClNO2 chemistry drives increases in ozone of up to 8 ppb over polluted continents in winter.
AB - We present a comprehensive simulation of tropospheric chlorine within the GEOS-Chem global 3-D model of oxidant-aerosol-halogen atmospheric chemistry. The simulation includes explicit accounting of chloride mobilization from sea salt aerosol by acid displacement of HCl and by other heterogeneous processes. Additional small sources of tropospheric chlorine (combustion, organochlorines, transport from stratosphere) are also included. Reactive gasphase chlorine Cl, including Cl, ClO, Cl2, BrCl, ICl, HOCl, ClNO3, ClNO2, and minor species, is produced by the HClC OH reaction and by heterogeneous conversion of sea salt aerosol chloride to BrCl, ClNO2, Cl2, and ICl. The model successfully simulates the observed mixing ratios of HCl in marine air (highest at northern midlatitudes) and the associated HNO3 decrease from acid displacement. It captures the high ClNO2 mixing ratios observed in continental surface air at night and attributes the chlorine to HCl volatilized from sea salt aerosol and transported inland following uptake by fine aerosol. The model successfully simulates the vertical profiles of HCl measured from aircraft, where enhancements in the continental boundary layer can again be largely explained by transport inland of the marine source. It does not reproduce the boundary layer Cl2 mixing ratios measured in the WINTER aircraft campaign (1-5 ppt in the daytime, low at night); the model is too high at night, which could be due to uncertainty in the rate of the ClNO2 CCl reaction, but we have no explanation for the high observed Cl2 in daytime. The global mean tropospheric concentration of Cl atoms in the model is 620 cm3 and contributes 1.0% of the global oxidation of methane, 20% of ethane, 14% of propane, and 4% of methanol. Chlorine chemistry increases global mean tropospheric BrO by 85 %, mainly through the HOBrCCl reaction, and decreases global burdens of tropospheric ozone by 7% and OH by 3% through the associated bromine radical chemistry. ClNO2 chemistry drives increases in ozone of up to 8 ppb over polluted continents in winter.
UR - http://www.scopus.com/inward/record.url?scp=85064733515&partnerID=8YFLogxK
U2 - 10.5194/acp-19-3981-2019
DO - 10.5194/acp-19-3981-2019
M3 - Journal article
AN - SCOPUS:85064733515
SN - 1680-7316
VL - 19
SP - 3981
EP - 4003
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
IS - 6
ER -