Abstract
凸多面体可以表示成一组线性不等式的交 ,称这种表示为凸多面体的“交形式”;同时 ,它也可以由其全部极点和对应的凸多面锥的全部极方向生成 ,称之为“和形式”.将一个凸多面体在“和形式”与“交形式”之间进行转化是数学规划中的一个基本问题 .本文使用类似线性规划中的“大 M-方法”,构造性地将无界凸多面体“和形式”的凸多面体转化为“交形式”,并用数值例子说明了该算法的应用过程 .||A polyhedron can be represented by a set of linear constraints,which we call “intersection-form”,or by a convex combination of finite extreme points and non-negative combination of finite extreme rays,which we call “sum-form”.To transfer a polyhedron between the “sum-form” and the “intersection-form” is a fundamental problem in the mathematical programming. This paper supplies a method of transferring the unbounded polyhedron of sum-form to its intersection-form by using the “Big-M Method”. Numberical example is also given to demonstrate the processes of our transferring algorithm. 还原
Original language | Chinese (Simplified) |
---|---|
Pages (from-to) | 87-90 |
Number of pages | 4 |
Journal | 系统工程理论与实践 (Systems engineering theory and practice) |
Volume | 24 |
Issue number | 3 |
Publication status | Published - 2004 |
Keywords
- Unbounded polyhedron "Sum-form" "intersection-form" "Big-M Method
ASJC Scopus subject areas
- Computer Science Applications
- Economic Geology
- Control and Systems Engineering
- Modelling and Simulation