The interfacial effect induced by rare earth oxide in boosting the conversion of CO2 to formate

Lianpeng Song, Zhong Liang, Mingzi Sun, Bolong Huang, Yaping Du

Research output: Journal article publicationJournal articleAcademic researchpeer-review

31 Citations (Scopus)

Abstract

The selectivity in the electrocatalysis of carbon dioxide reduction reaction (CO2RR) has attracted tremendous attention but still faces a great challenge. Constructing an interface has become an advanced strategy to effectively modulate electroactivity and selectivity. Herein, we report the synthesis of a CeO2/Bi3NbO7 fibrous tubular structure through a simple electrospinning method, which has shown a much-improved selectivity of 84.73% towards formic acid with remarkable durability in the CO2RR. Theoretical calculations have demonstrated that the construction interface has supplied highly electroactive regions with efficient electron transfer, which not only improves the adsorption of key adsorbates but also alleviates the reaction energy barriers. The modulation induced by the interface enables the high selectivity and yield of HCOOH. This work has supplied a novel and advanced strategy to utilize the interfacial effect in developing superior CO2RR electrocatalysts in the future.

Original languageEnglish
Pages (from-to)3494-3502
Number of pages9
JournalEnergy and Environmental Science
Volume15
Issue number8
DOIs
Publication statusPublished - 5 Jul 2022

ASJC Scopus subject areas

  • Environmental Chemistry
  • Renewable Energy, Sustainability and the Environment
  • Nuclear Energy and Engineering
  • Pollution

Fingerprint

Dive into the research topics of 'The interfacial effect induced by rare earth oxide in boosting the conversion of CO2 to formate'. Together they form a unique fingerprint.

Cite this