The effects of hypercapnia on DTI quantification in anesthetized rat brain

Abby Y. Ding, Edward S. Hui, Ed X. Wu

Research output: Chapter in book / Conference proceedingConference article published in proceeding or bookAcademic researchpeer-review

2 Citations (Scopus)

Abstract

Diffusion Tensor Imaging (DTI) offers a valuable in vivo tool to characterize water diffusion behavior in biological tissues, particularly brain tissues. The accuracy of DTI derived parameters can directly affect the interpretation of underlying microstructures, physiology or pathologies. It is anticipated that measurement of apparent diffusion coefficient (ADC) using DTI could be influenced and complicated by the presence of water molecules in brain vasculature. However, little is known about to what degree does blood signal from vasculature affect the diffusion quantitation. In this study, we examined the effects of hypercapnia on DTI quantification in rat brains using inhalation of 5% carbon dioxide (CO 2). It was found that statistically significant changes occurred in parametric DTI maps in response to cerebrovascular challenges, indicating that vascular factors could interfere with in vivo DTI characterization of neural tissues. Consequently, hemodynamic alterations can potentially affect the DTI quantitation and detection of tissue microstructures and pathological alterations. Therefore, cautions must be taken when interpreting DTI parameters in vivo.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
Pages2711-2714
Number of pages4
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2 Sept 20096 Sept 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period2/09/096/09/09

Keywords

  • Cerebral vascular
  • Diffusivity quantification
  • DTI
  • Hypercapnia

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'The effects of hypercapnia on DTI quantification in anesthetized rat brain'. Together they form a unique fingerprint.

Cite this