The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene

Tong Lin, Hongxia Wang, Huimin Wang, Xungai Wang

Research output: Journal article publicationJournal articleAcademic researchpeer-review

302 Citations (Scopus)

Abstract

Polystyrene nanofibres were electrospun with the inclusion of cationic surfactants, dodecyltrimethylammonium bromide (DTAB) or tetrabutylammonium chloride (TBAC), in the polymer solution. A small amount of cationic surfactant effectively stopped the formation of beaded fibres during the electrospinning. The cationic surfactants were also found to improve the solution conductivity, but had no effect on the viscosity. Only DTAB had an effect on the surface tension of the polymer solution, the surface tension decreasing slightly with an increase in the concentration of DTAB.


The formation of beaded fibres was attributed to an insufficient stretch of the filaments during the whipping of the jet, due to a low charge density. Adding the cationic surfactants improved the net charge density that enhanced the whipping instability. The jet was stretched under stronger charge repulsion and at a higher speed, resulting in an exhaustion of the bead structure. In addition, a polymer/surfactant interaction was found in the polystyrene–DTAB solution system, while this interaction was not found in the polystyrene–TBAC system. The polymer/surfactant interaction led to the formation of thinner fibres than those formed in the absence of the interaction.


The effects of a non-ionic surfactant, Triton X-405, on the electrospun fibres were also studied. The addition of Triton X-405 did not eliminate the fibre beads, but reduced the bead numbers and changed the morphology. Triton X-405 slightly improved the solution conductivity, and had a minor effect on the surface tension, but no effect on the viscosity.

Original languageEnglish
Pages (from-to)1375-1381
Number of pages7
JournalNanotechnology
Volume15
Issue number9
DOIs
Publication statusPublished - Sept 2004
Externally publishedYes

ASJC Scopus subject areas

  • Bioengineering
  • General Chemistry
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene'. Together they form a unique fingerprint.

Cite this