Abstract
The series of language recognition evaluations (LRE's) conducted by the National Institute of Standards and Technology (NIST) have been one of the driving forces in advancing spoken language recognition technology. This paper presents a shared view of five institutions resulting from our collaboration toward LRE 2015 submissions under the names of I2R, Fantastic4, and SingaMS. Among others, LRE'15 emphasizes on language detection in the context of closely related languages, which is different from previous LRE's. From the perspective of language recognition system design, we have witnessed a major paradigm shift in adopting deep neural network (DNN) for both feature extraction and classifier. In particular, deep bottleneck features (DBF) have a significant advantage in replacing the shifted-delta-cepstral (SDC) which has been the only option in the past. We foresee deep learning is going to serve as a major driving force in advancing spoken language recognition system in the coming years.
Original language | English |
---|---|
Pages (from-to) | 3211-3215 |
Number of pages | 5 |
Journal | Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH |
Volume | 08-12-September-2016 |
DOIs | |
Publication status | Published - Sept 2016 |
Externally published | Yes |
Event | 17th Annual Conference of the International Speech Communication Association, INTERSPEECH 2016 - San Francisco, United States Duration: 8 Sept 2016 → 16 Sept 2016 |
Keywords
- Evaluation
- Spoken language recognition
ASJC Scopus subject areas
- Language and Linguistics
- Human-Computer Interaction
- Signal Processing
- Software
- Modelling and Simulation