Abstract
Iridium-based polymer PM6Ir1 as an electron donor and two nonfullerene materials N3and ITIC-Th as electron acceptors were selected to prepare efficient polymer solar cells (PSCs). ITIC-Th was used as the third component to enhance photon harvesting and as a morphology regulator to optimize molecular arrangement and phase separation in the ternary active layer. Improvements in open circuit voltage (0.86 Vvs.0.84 V), short circuit current density (26.53 mA cm−2vs.26.13 mA cm−2) and fill factor (75.47%vs.74.11%) are simultaneously obtained for the PSCs with 10 wt% ITIC-Th in the acceptor mixture, leading to a power conversion efficiency (PCE) enhancement from 16.27% to 17.22%. The charge mobility and charge transport balance in the ternary active layer can be enhanced by incorporating ITIC-Th, resulting from the optimized phase separation and molecular arrangement with ITIC-Th as a morphology regulator. The positive effect of ITIC-Th incorporation on PCE improvement can be demonstrated by the relatively high external quantum efficiency values of the optimal ternary PSCs in the spectral range from 300 to 820 nm.
| Original language | English |
|---|---|
| Pages (from-to) | 5825-5832 |
| Number of pages | 8 |
| Journal | Sustainable Energy and Fuels |
| Volume | 5 |
| Issue number | 22 |
| DOIs | |
| Publication status | Published - 21 Nov 2021 |
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology