Abstract
The energy consumption for maintaining desired indoor temperature accounts for 20% of primary energy use worldwide. Passive rooftop modulation of solar/thermal radiation without external energy input has a great potential in building energy saving. However, existing passive rooftop modulation techniques failed to simultaneously modulate solar/thermal radiation in response to rooftop surface temperature which is closely related to the building thermal loads, leading to limited or even counter-productive overall energy saving. Here, we report the development of a surface temperature-adaptive rooftop covering with synergetic solar and thermal modulations. The covering, made of a scalable metalized polyethylene film, demonstrated excellent solar absorptance modulation (72.5%) and thermal emissivity modulation (79%) in response to its temperature change from 22°C (indoor heating setpoint) to 25°C (indoor cooling setpoint), and vice versa. Building energy simulations demonstrate that the proposed rooftop covering can achieve all-season energy savings across all climate regions.
Original language | English |
---|---|
Article number | 107388 |
Journal | iScience |
Volume | 26 |
Issue number | 8 |
DOIs | |
Publication status | Published - 18 Aug 2023 |
Keywords
- Energy sustainability
- Energy systems
- Solar terrestrial physics
ASJC Scopus subject areas
- General