Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities

Research output: Journal article publicationJournal articleAcademic researchpeer-review

32 Citations (Scopus)

Abstract

In the current academic fields of zero-energy community, there is still limited knowledge on the integration of a coastal community with hybrid ocean-related energy systems. This study investigates the feasibility of a coastal community to reach zero-energy with the support of a hybrid offshore wind and tidal stream energy generation system, as well as an ocean and solar thermal energy supported district cooling and heating system. TRNSYS simulation was performed to demonstrate a proposed community that comprises 8 high-rise residential buildings and 2 mid-rise office buildings with a 9.86 MW community peak power demand. This study considered 21 hybrid renewable energy cases and investigated their performance in 2 scenarios – scenario 1 without battery and scenario 2 with battery. The system performance is assessed from the technical, economic, and emission perspectives by analysing the system load matching, net present value, discounted payback period, and equivalent CO2 emission. In scenario 1, the hybrid renewable energy case 5 with 6 offshore wind turbines (12 MW) and 117 tidal stream converters (29.25 MW) has the best annual load matching (56.68% “onsite energy matching” and 57.84% “onsite energy fraction”) mainly due to their complementary generation pattern during specific periods. In scenario 2, the community-scale electricity storage significantly increases the system technical performance by raising the “onsite energy matching” and “onsite energy fraction” of case 5 to 75.25% and 74.75%, respectively. In addition, the techno-economic analysis reveals the market competitiveness of the 21 RE cases and demonstrates the significant economic impact of the FiT policy. The comparison between scenario 1 and scenario 2 indicates that the community-scale battery diminishes the operation-cycle profits but reduces the equivalent CO2 emission. Furthermore, with the current price settings, tidal stream energy generation is considered less profitable than offshore wind energy generation. This study could provide important insights into the development of coastal zero-energy communities with hybrid offshore wind and tidal stream energy generation at other locations worldwide, especially densely populated coastal cities.

Original languageEnglish
Article number119118
JournalApplied Energy
Volume316
DOIs
Publication statusPublished - 15 Jun 2022

Keywords

  • Coastal zero-energy community
  • Community-scale electricity storage
  • Hybrid renewable energy system
  • Offshore wind energy
  • Tidal stream energy

ASJC Scopus subject areas

  • Building and Construction
  • Mechanical Engineering
  • General Energy
  • Management, Monitoring, Policy and Law

Fingerprint

Dive into the research topics of 'Techno-economic analysis of the transition towards the large-scale hybrid wind-tidal supported coastal zero-energy communities'. Together they form a unique fingerprint.

Cite this