TY - GEN
T1 - TC-LIF: A Two-Compartment Spiking Neuron Model for Long-term Sequential Modelling
AU - Zhang, Shimin
AU - Yang, Qu
AU - Ma, Chenxiang
AU - Wu, Jibin
AU - Tan, Kay Chen
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays. As a result, it remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues. To address this challenge, we propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF. The proposed model incorporates carefully designed somatic and dendritic compartments that are tailored to facilitate learning long-term temporal dependencies. Furthermore, a theoretical analysis is provided to validate the effectiveness of TC-LIF in propagating error gradients over an extended temporal duration. Our experimental results, on a diverse range of temporal classification tasks, demonstrate superior temporal classification capability, rapid training convergence, and high energy efficiency of the proposed TC-LIF model. Therefore, this work opens up a myriad of opportunities for solving challenging temporal processing tasks on emerging neuromorphic computing systems. Our code is publicly available at https://github.com/ZhangShimin1/TC-LIF.
AB - The identification of sensory cues associated with potential opportunities and dangers is frequently complicated by unrelated events that separate useful cues by long delays. As a result, it remains a challenging task for state-of-the-art spiking neural networks (SNNs) to establish long-term temporal dependency between distant cues. To address this challenge, we propose a novel biologically inspired Two-Compartment Leaky Integrate-and-Fire spiking neuron model, dubbed TC-LIF. The proposed model incorporates carefully designed somatic and dendritic compartments that are tailored to facilitate learning long-term temporal dependencies. Furthermore, a theoretical analysis is provided to validate the effectiveness of TC-LIF in propagating error gradients over an extended temporal duration. Our experimental results, on a diverse range of temporal classification tasks, demonstrate superior temporal classification capability, rapid training convergence, and high energy efficiency of the proposed TC-LIF model. Therefore, this work opens up a myriad of opportunities for solving challenging temporal processing tasks on emerging neuromorphic computing systems. Our code is publicly available at https://github.com/ZhangShimin1/TC-LIF.
UR - http://www.scopus.com/inward/record.url?scp=85189505222&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i15.29625
DO - 10.1609/aaai.v38i15.29625
M3 - Conference article published in proceeding or book
VL - 38
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 16838
EP - 16847
BT - Proceedings of the AAAI Conference on Artificial Intelligence
ER -