TY - JOUR
T1 - Tailoring electrospun nanocomposite fibers of polylactic acid for seamless methylene blue dye adsorption applications
AU - Subash, Alsha
AU - Naebe, Minoo
AU - Wang, Xungai
AU - Kandasubramanian, Balasubramanian
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
PY - 2024
Y1 - 2024
N2 - The introduction of biopolymers, which are sustainable and green materials, desegregated nature’s water purification proficiency with science and technology, opens a new sustainable methodology in water reclamation. In order to introduce an efficacious adsorbent system for MB dye-toxic pollutant, adsorption, providing robust mechanical properties and facile processability, a facile system was introduced via electrospinning utilizing polylactic acid (PLA) and Ti3C2Tx, viz., PMX. The addition of 3 wt.% Ti3C2Tx led to a 3-fold substantial augmentation in the uptake capacity of the membrane from 197.28 to 307 mg/g when the adsorbate concentration was 100 ppm. The adsorption followed a PSO behavior, proposing that the rate-limiting stage is chemisorption and data best fitted to Freundlich isotherm, indicating heterogeneous adsorption sites and multi-layer adsorption. Further, biodegradability was studied by simulating natural environmental conditions where the nanofibers exhibited 42–64% degradation after 270 days. Based on the result with PLA, it is anticipated that the prepared fibrous system will introduce a new perspective as a potential candidate for MB removal from wastewater, opening new directions toward the research and development in wastewater treatment with electrospun biopolymer fibers using waste PLA. Graphical Abstract: (Figure presented.)
AB - The introduction of biopolymers, which are sustainable and green materials, desegregated nature’s water purification proficiency with science and technology, opens a new sustainable methodology in water reclamation. In order to introduce an efficacious adsorbent system for MB dye-toxic pollutant, adsorption, providing robust mechanical properties and facile processability, a facile system was introduced via electrospinning utilizing polylactic acid (PLA) and Ti3C2Tx, viz., PMX. The addition of 3 wt.% Ti3C2Tx led to a 3-fold substantial augmentation in the uptake capacity of the membrane from 197.28 to 307 mg/g when the adsorbate concentration was 100 ppm. The adsorption followed a PSO behavior, proposing that the rate-limiting stage is chemisorption and data best fitted to Freundlich isotherm, indicating heterogeneous adsorption sites and multi-layer adsorption. Further, biodegradability was studied by simulating natural environmental conditions where the nanofibers exhibited 42–64% degradation after 270 days. Based on the result with PLA, it is anticipated that the prepared fibrous system will introduce a new perspective as a potential candidate for MB removal from wastewater, opening new directions toward the research and development in wastewater treatment with electrospun biopolymer fibers using waste PLA. Graphical Abstract: (Figure presented.)
KW - Electrospinning
KW - Fibers
KW - Methylene blue
KW - MXene
KW - Waste PLA
UR - http://www.scopus.com/inward/record.url?scp=85192169878&partnerID=8YFLogxK
U2 - 10.1007/s11356-024-33393-9
DO - 10.1007/s11356-024-33393-9
M3 - Journal article
AN - SCOPUS:85192169878
SN - 0944-1344
JO - Environmental Science and Pollution Research
JF - Environmental Science and Pollution Research
ER -