Abstract
Natural polysaccharides are attractive and promising biomacromolecules for the green synthesis of silver nanoparticles (Ag NPs) with a broad spectrum of useful functions. This study aims to evaluate the synthetic conditions and physical properties of Ag NPs using three fractions of exopolysaccharide (EPS), namely EPS-1, EPS-2, and EPS-3, produced by a medicinal fungus known as Cs-HK1, with variations in their chemical composition and molecular weight. Each of the EPS fractions had a unique set of optimal synthetic conditions (reaction time course, temperature, and reagent concentration), resulting in a specific range of Ag NP size distributions. The Ag NPs synthesized with the EPS-1 fraction had the smallest particle size (~160 nm) and the most significant antibacterial activities against Escherichia coli (Gram−) and Staphylococcus aureus (Gram+), with a minimal inhibitory concentration (MIC) of 0.2 mg/mL on E. coli and 0.075 mg/mL on S. aureus. The results proved the success of the scheme of this green synthesis scheme with all three EPS fractions and the potential antibacterial application of EPS-coated Ag NPs.
Original language | English |
---|---|
Article number | 5620 |
Journal | Materials |
Volume | 15 |
Issue number | 16 |
DOIs | |
Publication status | Published - Aug 2022 |
Keywords
- antibacterial activity
- fungal polysaccharide
- reaction conditions
- silver nanoparticle
ASJC Scopus subject areas
- General Materials Science
- Condensed Matter Physics